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Basic idea: Assuming independentnormal distributions for individual segments, we seek a maximum
likelihood estimation of the feature mapping )/, so that the feature induced partitioning Z in the image and ©
clustering across images provide maximum discrimination among segments.

von-Mises Fisher distribution: ~ f(v | g, k) = Cy(k) exp(np.T'v)

Contributions » Single MLE objective:
Seigmrr?eglis query (in red box) and retrieved . Optimize in a two-stage EM: [ Z @ ] V
Pixel Sorting: Partition Each Image Segment Sorting: Organize All Segments
« EM for K-mean clustering based on ) for each image < Unsupervised vMF Loss:
fs(v; | © » Maximize discrimination among segments.
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baseline ours (supervised) ours ) . . . ¢ Superv1sed vME-NCA Loss:
(unsupervised) « Alternative for unsupervised semantic segmentation:

» Maximize discrimination between different-class segments.

1. First deep end-to-end non-parametric segmentation > sco+ exp(Kpg v;)

Liypx = — log Z Pip(zz =s|v;,0) =—log T
2. First deep unsupervised semantic segmentation sec 2 i4c SXP (Kl Vi)

3. Interpretability from retrieved segments * Memory bank caching segment prototypes across batches.



