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Abstract

Many machine learning approaches train networks with

input from large datasets to reach high task performance.

Collected datasets, such as Berkeley Deep Drive Video

(BDD-V) for autonomous driving, contain a large variety

of scenes and hence features. However, depending on the

task, subsets, containing certain features more densely, sup-

port training better than others. For example, training net-

works on tasks such as image segmentation, bounding box

detection or tracking requires an ample amount of objects in

the input data. When training a network to perform optical

flow estimation from first-person video, over-proportionally

many straight driving scenes in the training data may lower

generalization to turns. Even though some scenes of the

BDD-V dataset are labeled with scene, weather or time of

day information, these may be too coarse to filter the dataset

best for a particular training task. Furthermore, even defin-

ing an exhaustive list of good label-types is complicated as

it requires choosing the most relevant concepts of the natu-

ral world for a task. Alternatively, we investigate how to use

examples of desired data to retrieve more similar data from

a large-scale dataset. Following the paradigm of ”I know

it when I see it”, we present a deep learning approach to

use driving examples for retrieving similar scenes from the

BDD-V dataset. Our method leverages only automatically

collected labels. We show how we can reliably vary time of

the day or objects in our query examples and retrieve near-

est neighbors from the dataset. Using this method, already

collected data can be filtered to remove bias from a dataset,

removing scenes regarded too redundant to train on.

1. Introduction

Neural networks need to capture visual, temporal and ac-

tion aspects of our world to perform well on autonomous

driving tasks. To that end, large datasets were created with

many examples of expert driving to provide real world refer-

ences. The BDD-V dataset consists of a very large amount

of videos and automatically recorded kinematic informa-

tion, crowd-sourced from dashcams behind the windshield

of many drivers on the West- and East-coast of the United

States. However, unlike databases as ImageNet, where im-

ages are labeled with their depicting object categories, the

BDD data provides similarly rich annotations only for a

subset. This motivates a question in driving dataset cura-

tion: How to search through unlabeled data for specific

scenes? In the following, we answer a slightly modified

question: Given exemplary scenes that represent desired

features, how to retrieve similar data from a very large,

unannotated dataset?

We compare two variations of example encoding to

query for similar data: Single images and sequences of

image-action pairs (which we refer to as scenes). While

the former concept is similar to common image retrieval ap-

proaches, the latter includes past actions and camera images

and can be thought of as observing bursts of driving behav-

ior within a second.

The retrieval approach is based on work from [4] for

unsupervised image classification. In supervised classifi-

cation, extensive human labeling of data is necessary. How-

ever, labeling similar scenes requires the same understand-

ing of similarity among human labelers. With our approach

we make a network come up with a suitable concept of

similarity to rank first-person driving query instances. As

shown, retrieved nearest neighbors for query images are in-

deed similar according to concepts such as the number of

objects, street architecture or time of the day. In Figures 1,

2, and 3, we qualitatively show image similarity by compar-

ing queries and retrievals for driving scenes, showing exem-

plary scene configurations.
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Figure 1: Retrievals of the network for a single query image. In row a), sunny street corners are retrieved even though the

street layout is more varied as when using scenes. In b) pedestrian crossings with many cars in the scene are reliably found.

Also, the time of the day and weather fits in between the query and retrieval as shown in c) and d)

2. Related Work

Deep metric learning approaches have been used for

recognition [3], re-identification and video categorization

tasks in the past. Joonseok et al. [7] are related to our ap-

proach as they embed video features into a neighbourhood

to preserve similarity.

A difference to our method is their metric, which re-

gards videos similar if they were watched in the same ses-

sion from the same user on YouTube. Other metric learning

techniques process pairs or triplets to preserve similarities

across samples semi-supervised. For example, parallel neu-

ral processing streams with shared weights evaluate pairs,

and a final contrastive loss is either pushing pairs together

or pulling them apart based on shared labels. This matches

pairs from the same class but with different domain features

(e.g., different lighting conditions or viewpoints), as shown

by Bell and Bala [1].

Another similar technique relies on surrogate patch sam-

pling for supervision, where the network treats the patches

as surrogate classes to learn features [2].

Wu et al. [5] showed how an unsupervised instance-

based classifier can perform object classification tasks.

Their learned feature embedding maps novel images locally

close to training images with the same label. They also

leveraged some parametric calculations to infer efficiently

enough for real-time computation.

3. Method

We train and compare networks to map images and

image-action sequences (scenes) to nearest neighbors in the

dataset. The results are hard to quantify given the unlabeled

data, so we evaluate our retrieval approach by inspecting

and showing many query-retrieval examples by hand.

3.1. Data

Our used BDD video-dataset [8] contains more than

1.8TB of first-person driving scenes in urban areas. Video

sequences are labeled with accelerations, angular velocities

and GPS information. These were processed by [6] into ac-

tion vectors for the task of action prediction. Also, for 100k

non-consecutive frames from different videos, images were

annotated with labels such as weather, scene and time of

day. A subset of 10k images contains further labels such

as image segmentations and objects. We do not use any

of these labels during training. We used the BDD 100k

dataset for single-image queries and the full video dataset

for image-action-sequences as queries. We adopt the action

encoding of [6], which encodes the behavior of the vehicle.

3.2. Driving Scene Definition

Our scenes are defined as a number of past and future

frames, relative to a time point t. Similar to Xu et al. [6], we

pre-process BDD driving videos into approximately 40 sec-

ond long chunks. We parse those in a sliding window fash-

ion with window-size of 6 sampled frames, without overlap.

To reduce redundant data and action correlation, we hop

with 4-frame spacing in between consecutive frames. Driv-

ing scenes (s) are defined as a number N = n · 2, n ∈ N of

images xi and action vectors ai. Half of the actions lead up

to the current point t in time:

sj := (xi, ai), j ∈ {0 . . .
M

N
}

i ∈ {t− (N
2
− 1), t− (N

2
− 2), . . . , t, . . . , t+ (N

2
− 1), t+ (N

2
)}
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Figure 2: Retrievals of the network for visual-action scenes. a) Instances of overhead bridges are retrieved from the training

set using query instances from the test set. b) Scenes with strong sunlight, creating glare effects, dominate the retrievals. c)

Pedestrian crossings are retrieved at similar perceived angles and similar in d) at night.

Where M is the amount of samples retrieved from our

sliding window sampling.

We train only on the past part of the a scene s
p
j :=

(xi, ai), i ∈{t− (N
2
− 1), . . . , t}. During training, we ob-

serve the difference of actions of the query and the retrievals

to monitor the training status.

3.3. Neighborhood Metric Learning

In the work of [4], image features are stored in a mem-

ory bank. From there, cosine distances between features

on this high-dimensional sphere are computed efficiently to

measure similarity. Query images (e.g., lions) are mapped

to visually similar instances of related or same classes (e.g.,

big cats).

Similarly, we adopted this approach to train on the BDD

100k dataset of individual driving images. Furthermore, we

extended the approach to work with our defined scenes (i.e.,

sequences of image-action pairs) on BDD-V. During train-

ing, to map every sample to its own ID, the network has

to derive filters matching useful discriminatory features in

the input space. This creates a network which maps sam-

ples into local neighborhoods with similar visual-action fea-

tures, both spatially and temporally. An example of similar-

ity would be all scenes driving on a straight road at night or

on a highway in broad daylight.

Using a Resnet18 architecture on scenes s
p
j , we perform

instance-based learning for every sample in the our training

dataset (i.e., the network is trained to correctly predict the

numerical sample ID of input s
p
j , according to a fixed enu-

meration). We use the same 128 dimensional feature vector

and perform non-parametric Softmax classification as de-

scribed in [5].

In order to match the standard input size of ResNet mod-

els, the input video frames within our scenes are resized to

224 × 224. For validation, we parse query scenes from a

validation set and compare the retrieved top-K scenes from

the training set. Due to our lack of ImageNet-like labels, we

compare the ground truth future actions of all test scenes

to the future action labels of the retrieved top-K training

scenes. That way, we keep track of the best epoch, with re-

spect to minimizing the difference of future actions. This in-

dicator allows us to see convergence along both dimensions,

action and visual. It improves training for visual similarity

as actions and visual information during driving are heavily

correlated. We also chose action labels as our basic per-

formance metric because they are automatically generated

while driving and allow us to avoid relying on any manu-

ally generated label. Correlation of future actions in scenes

shows how future scene progression is similar. Since dur-

ing driving, visual elements, e.g. a traffic light, a pedestrian

crossing or an obstacle, determines the course of the future

scene we see future action correlation as an indication of

how the network learned to detect and map these concepts.

Actions in our approach are action probability vectors,

which are calculated like in [6] from ground truth speed and

course information at each time point. We have chosen the

same possible actions, go straight, stop or slow, turn left

or turn right.

Action probability vectors are concatenated with the sec-

ond layer output of the Resnet-backbone, after the vectors

are expanded to full output feature maps with a size of 28

× 28. This fusion adds only about 10K parameters to the

model and overall, the backbone ResNet18 model, with ac-

tion fusion, has about 11M parameters.
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Figure 3: Further retrieval instances from the visual-action network. a) shows a combination of cars with illuminated brake

lights, in the early afternoon. Some of these conditions can change independently such as in b), where illuminated brake

lights are retrieved at night and in c) where the reflection of the car paint is visually more salient than the weak taillights. In

d) the same crossing, with the same sign of an American casual dining restaurant is retrieved several times. From the amount

of cars in the scene it can be observed that retrievals come from a different point in time than the query but are most likely

from the same video clip as an emergency vehicle is leaving the scene.

4. Results and Conclusion

The single-image network retrieves images, similar in

time of the day, weather and matching in many objects, as

can be seen in Figure 1. Nevertheless, some details such as

pedestrian crossings, angle to the street or colors of head-

or taillights do not match. Since single images are used for

training and inference, no temporal information is available.

However, the information contained in a sequence of im-

ages can help separate features such as turns. When using

a sequence of image-action pairs as input we see matching

pedestrian crossings even at the right angle (figure 2) and in

figure 3 it is possible to distinguish in between illuminated

brake and tail lights.

In summary we show how our approach can query a large

scale driving dataset for data, similar to a query sample.

Fine grained control over the content of the retrieval is pos-

sible, without defined labels, by choosing a fitting query.

This can be used to filter datasets in order to create training

curriculums, better suited to a particular machine learning

task.
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