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« Structured predictions output correlated 2D masks,

iIncluding semantic segmentation, depth
estimation, surface normal prediction, efc..

* |ID (softmax /L2) is the most common approach, 1=

i
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which ignores label correlations among pixels.

* GAN is a prior based structural model, which
encodes relationships in a one-to-set mapping.

* Our ASM adversarially matches multiscale
structures in the label space, featuring:

1. Adaptive structure prior
2. Instance specificity

3. Generalizability.

« Adaptive Affinity Fields (2" order regularization):
AAF only selects pixel relationships adaptively.
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multiple ranges minimization maximization
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Adaptive Affinity Fields for Semantic Segmentation, ECCV 2018.

Adversarial Structure Matching for Structured Prediction Tasks
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Adversarial Structure Matching
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* Objective: S* =argminmaxEy [% |A(S(x)) — A(y)
S

A

regularizer f--

adversarial structure matching loss

+min AE, 11D (y, R (A(y)))],

structure regularization loss

. Sampled oss patterns in different layers:
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* Analyzer A is trained to maximize the multiscale
structural mistakes of §. = Hard negative mining.

 Predictor S is trained to minimize the same error.

* Regularizer R ensures that A4 also forms a good
basis for reconstructing the ground truth.

« Assuming infinite capacity for § and A4, we proved
S*(x) =yand V(S§*,A*) = 0. (Nash equilibrium)

* ASM retains critical assessments thru training:
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What’s Learned in Analyzer A?
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* A encodes multiscale pixel relationships, e.qg.,
person riding bike, hand picking up bottle, efc..

A and R learn to complete shapes while
A adaptively refines the focus of supervision.
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Improvements on Boundary Precision
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