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Abstract—Self-similarity is often an indicator of highly aes-
thetic paintings; a key aspect is what feature to use for evaluating
self-similarity. Previous works use low-level features such as the
gradient orientation to show that artworks and natural scenes
share a similar degree of self-similarity. In this study, we take
advantage of the AlexNet model to evaluate the changes of self-
similarity at different convolutional layers in a CNN model.
Compared to previous measures, our approach takes into account
low, mid, and high level features. Different behaviors with regards
to self-similarity at different layers is observed in paintings.
The results confirm previous findings that artworks and natural
scenes share similar degrees of self-similarity. For paintings and
photographs with similar subject matters, while different degrees
of self-similarity are observed at the first layer, other layers show
closer values. Finally, the proposed measure of self-similarity is
able to better differentiate between images which belong to a
similar category but different datasets of images.

I. INTRODUCTION

Self-similarity is one of the universal characteristics found
in highly aesthetic paintings. That is, if we zoom in and out
of a highly self-similar image we see similar patterns. In other
words, a highly self-similar image has a fractal like property
[1]. In this work, using a Convolutional Neural Network
(CNN), we performed an in-depth analysis on how different
low, mid, and high level features affect the degree of self-
similarity seen in paintings. We wanted to find out which type
of images closely resemble the degree of self-similarity seen
in paintings at different convolutional layers. Previously, using
a limited number of features related to the orientation seen in
the image, artworks and natural scenes shared a similar degree
of self-similarity. Our questions is, does such property hold
when calculating self-similarity using CNN features? Simply,
we are using a statistical approach to compare CNN features
at different levels of the spatial resolution and extend that to
see how self-similar an image is. Using the new approach, we
showed that paintings and photographs with similar subject
matters have close self-similarity values. Nevertheless, self-
similarity values were different when judging self-similarity
only based on features related to orientation.

The existence of universal characteristics in artworks has
been a hot topic of research in the field of experimental

aesthetics [1], [2], [3], [4]. The mentioned properties are seen
independent of the subject matter it covers, the style or art
period it is associate with, or the cultural background the
creator has. Studies through different subjective and psycho-
logical experiments by philosophers, psychologists, artists, and
vision experts has been the main approach taken in this field
of studies. Works have related the mentioned characteristics
to the human visual system and pointed out that they evoke
aesthetic perception in all observers. Following this line of
work, in the field of computational aesthetics, it has been
shown that such universal characteristics are seen not only
in paintings but other types of artworks such as handwritings,
ornate prints, ornaments, and even print advertisements from
different regions and cultural backgrounds [5], [6]. One such
universal characteristic seen in paintings is self-similarity [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14]. In this study, we
used the AlexNet [15] model which has been pre-trained on
the ImageNet [16] dataset to study the degree of self-similarity
in different convolutional layers in the network. We then took
one step further and linked the calculated values to reach a
single value which can represent the overall self-similarity in
the image.

It has been pointed out in different studies that the high
degree of self-similarity seen in artworks is close to those of
natural scenes. In general, a number of research in different
fields of study have pointed out the fact that artworks and
complex natural scenes share common statistical properties
[7], [17], [18], [19], [20]. Different studies suggest that similar
coding mechanisms in the human visual system (efficient
sensory code) might be used for both types of images [12],
[13], [21]. Some works have went on to hypothesis that
the shared property is intentionally mimicked by artists to
resemble the properties seen in natural scenes [10], [12]. As an
example, Amirshahi et al. [9] showed that although a dataset
of portrait paintings is highly self-similar, the degree of self-
similarity seen in a set of portrait photographs is quite low.

The rest of the paper is organized as follows: we will first
give a short overview on previous works focused on evaluating
self-similarity in paintings and other artworks in Section II.
Section III is dedicated to introducing the proposed approach.



A short description of the datasets used in our experiments is
given in Section IV while the experimental results is presented
in Section V. Finally, in Section VI, a conclusion of this work
is discussed.

II. PREVIOUS WORKS

Studies such as [10], [13], [14] were among the first
works to take a computational approach for evaluting self-
similarity in artworks. In the mentioend studies, the Fourier
analysis was used to study statistical properties of Eastern
and Western graphic artworks. The results showed that like
complex natural scenes, graphic artworks have a scale invariant
Fourier spectrum. This means that when we zoom in and out of
an image the spatial frequency profile remains constant. From
the results, they implied that images of both graphic artworks
and complex natural scenes have a spatial frequency profile
which is self-similar (fractal-like). Redies et al. [13] showed
that unlike artworks and natural scenes, other types of images
such as photographs of faces, plants, and simple objects do
not follow the same spatial properties.

It can be implied from the mentioned works and other
studies such as [22], [23] that graphic artworks show a high
degree of self-similarity at different levels of the spatial
resolution. Based on this finding and inspired by how PHOG
(Pyramid of Histogram of Orientation Gradients) features
[24] are calculated for an image, works such as [7], [9],
[11] introduced a new measure of self-similarity. To calculate
the measure of self-similarity, they first compute the HOG
(Histogram of Orientation Gradients) feature vectors [25],

h(I) = (h1(I), h2(I), . . . , hi(I), . . . , hn(I)), (1)

for a given image I. In Eq 1, the HOG feature vector is
presented by h(I), the ith bin in h(I) is shown by hi(I), and n
corresponds to the number of bins in the HOG feature vector.
Similar to the PHOG approach, they then divide the image
into four equal sub-regions and calculate the HOG feature
vectors for each sub-region. In the proposed approach, the
calculation is continued for level four of the spatial pyramid.
The proposed approach is based on comparing different HOG
vectors calculated for all the sub-regions in a specific level to
their parent region. The next step in calculating the measure
of self-similarity is to introduce

dHIK(h(I1), h(I2)) =
n∑

i=1

min(hi(I1), hi(I2)). (2)

The Histogram Intersection Kernel (HIK) [26] is calculated
between the HOG feature vectors in two different regions in
an image I (I1 and I2). This allows to determine how similar
two HOG feature vectors are. Finally,

mSS(I, L) = median{dHIK(h(S), h(N(S)))}, (3)

is used to calculate self-similarity for image I at level L. The
median value is calculated among all the HIK values calculated
between all sub-regions of the image at level L of the spatial
pyramid. In Eq. 3, h(N(S)) corresponds to the parent region in

the image to which sub-region S is compared to. The median
value in Eq. 3 is used to avoid taking the overshoots into
account.

Amirshahi et al. [7] pointed out to a number of drawbacks
in the proposed measure of self-similarity. For instance, self-
similarity is measured based on a single spatial level omitting
the changes seen in other levels. For this reason, the measure
of weighted self-similarity was proposed. In summary, using
a simple weighting approach, the measure of weighted self-
similarity

mWSS(I) =
1− σ(mSS(I))∑L

l=1
1
l

L∑
l=1

1

l
·mSS(I, l), (4)

links self-similarity values calculated at different levels of the
spatial pyramid. In Eq. 4,

mSS(I) =(mSS(I, 1),mSS(I, 2), · · · ,
mSS(I, z), · · · ,mSS(I, L)),

(5)

corresponds to a self-similarity vector consisting of all self-
similarity values calculated at different levels for a given image
I. In Eq. 4, σ corresponds to the standard deviation. It should
be pointed out that [7] suggested that level L in mSS(I, L)
corresponds to the last level in the spatial pyramid which the
smallest side of the smallest sub-region is greater than 64
pixels.

While the introduced approaches have led to acceptable
results [7], [9], [11], self-similarity is only evaluated based on
using local features in the image (different orientation angles).
In this study, by using a Convolutional Neural Network (CNN)
model, we not only focused on using local features but also
took a step further and used mid and high level features in
our calculation. In the next section the proposed approach is
described in detail.

III. PROPOSED APPROACH

In the last few years, a huge amount of attention has been
paid to the use of different CNN models in various computer
vision scenarios. The methods which take advantage of the
use of CNNs have shown a better performance with regards
to the accuracy they provide. This issue along with the high
number of feature maps extracted from the image encouraged
us to study the self-similarity seen in the image based on the
extracted feature maps. This approach will allow us to not only
provide a single value which represents the self-similarity in
an image but we are also able to calculate self-similarity at
different layers of the network based on different feature maps.
Compared to previous proposed approaches in this field of
study, taking into account low, mid, and high level features in
our approach is another advantage of the introduced method.

The proposed approach was based on the measure of
weighted self-similarity previously introduced by Amirshahi et
al. [7]. In our approach, using the AlexNet [15] model which
was pre-trained on the ImageNet [16] dataset we calculated
the measure of self-similarity for each convolutional layer. The
five self-similarity values were then linked with each other to



provide a single score for each image. We should point out
that Amirshahi et al. [27] took a similar approach to propose
a new image quality metric. The following steps were taken
for calculating the self-similarity at each layer.

1) For each of the five convolutional layers n, we calculate
histogram

h(n) = (

X∑
i=1

x∑
j=Y

F(n, 1)(i, j),
X∑
i=1

x∑
j=Y

F(n, 2)(i, j),

· · · ,
X∑
i=1

x∑
j=Y

F(n, z)(i, j), · · · ,
X∑
i=1

x∑
j=Y

F(n,M)(i, j)).

(6)

In Eq. 6, F(n, z) corresponds to feature map z in the
nth convolutional layer and X and Y correspond to the
height and width of the feature map. It is clear that
each bin in the histogram h corresponds to the sum
of the response of the feature maps at a given layer.
It is interesting to point out that the sum over each
feature map can be compared to the bin entry in the
HOG vectors. Keep in mind that unlike the case of the
measure of weighted self-similarity where only 16 bins
were used, in the case of our method, we are dealing
with a huge number of bin entries ( each representing
one of the feature maps). For example just in the first
layer, 96 feature maps are extracted from the image.

2) Similar to the approach taken in [7], we then divided
each feature map to four equal sub-regions and calcu-
lated histogram h for each sub-region.

3) The division and calculation was then continued as
long as the smallest side of the smallest sub-region
was equal or larger than 7 pixels. In other words, we
did the calculations until the third level for the first
convolutional layer, the second level for the second layer,
and the first level for the third, fourth, and fifth layers.

4) Having the different histogram vectors at different levels
and different layers, for each layer n, the measure of
self-similarity was calculated by

mCLWSS(I, n) =
1− σ(mCSS(I, n))∑L

l=1
1
l

L∑
l=1

1

l
·mCSS(I, n, l).

(7)

In Eq. 7, mCLSS(I, n, l) corresponds to the self-
similarity value calculated for image I at level l in
the nth layer. mCSS(I, n) is then the result of the
concatenation of all mCSS values for I at the nth layer.

5) Since the self-similarity at each layer was calculated at
different levels, to link all the self-similarity values, in-
stead of using an arithmetic mean we used the geometric
mean

mCWSS(I) =
5∏

n=1

mCLWSS(I, n). (8)

In Eq. 8, mCWSS(I) corresponds to the overall self-
similarity of image I.

IV. IMAGE DATABASES

To be able to compare the self-similarity measure introduced
in this work to previous results, we use the image datasets
introduced in the work of Amirshahi et al. [7]. For an in-
depth information about the datasets please refer to [7]. The
image datasets used in our experiments can be categorized to
four category of images.

A. Artworks

For the case of aesthetic paintings, we use the JenAesthetics
Dataset [7], [28], [29] (Fig. 1(a)). The dataset consists of 1621
images from 11 different art periods and provides information
about the three dominant subject matters observed in the
paintings.

B. Natural Scenes

As mentioned earlier, different studies have pointed out
that artworks and natural scenes share common statistical
properties such as similar degrees of self-similarity. This
category of images consists of three different datasets which
are plant patterns (Fig. 1(b)), vegetation (Fig. 1(c)), and large
vistas (Fig. 1(d)). It should be pointed out that the datasets
have been captured in a way that they seem to be photographs
captured from the same scene at different distances. While
the plant pattern dataset are captured from a short distance
the vegetation dataset are taken from a further distance and
images in the large vista dataset are photographs taken from
a far distance.

C. Highly Self-similar Natural Patterns

This category of images consists of four different datasets,
lichen (Fig. 1(e)), clouds (Fig. 1(f)), turbulent water (Fig.
1(g)), and branches (Fig. 1(h)). The images can be used to
evaluate the validity of the proposed measure.

D. Other Datasets

This category of images is used to compare artworks with
datasets of photographs taken from other man-made structures
and objects as well as portrait photographs. For example,
in our experimental results, we compare paintings and pho-
tographs of urban scenes (Fig. 1(i)), buildings (Fig. 1(j)),
facades (Fig. 1(k)), and simple objects (Fig. 1(l)). To compare
portrait photographs and paintings, 500 images were randomly
selected from the labeled faces in the wild dataset [30] (Fig.
1(m)). Similar to the case of the datasets in the natural scenes
category it can be assumed that the images in the facades,
buildings, and urban scenes datasets are taken from the same
scene from different distances.



(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

Fig. 1. Sample images from the (a) JenAesthetics with 1621, (b) plant patters with 331, (c) vegetation with 525, (d) large vistas with 584, (e) lichen with
280, (f) clouds with 248, (g) turbulent water with 425, (h) branches with 302, (i) Urban scenes with 225, (j) buildings with 528, (k) facades with 175, (l)
simple objects with 207, and (m) portrait photographs with 500 images in our datasets.

U
rb
an
sc
en
es

B
ui
ld
in
gs

Fa
ca
de
s

Si
m
pl
e
ob
je
ct
s

Po
rt
ra
it
ph
ot
og
ra
ph
s

La
rg
e
vi
st
as

Ve
ge
ta
tio
n

Pl
an
t
pa
tt
er
ns

Li
ch
en

C
lo
ud
s

Tu
rb
ul
en
t
wa
te
r

B
ra
nc
he
s

Je
nA
es
th
et
ic
s0.5

0.6

0.7

0.8

0.9

1

S
el
f-
S
im

il
ar
it
y

(a) Conv1

U
rb
an
sc
en
es

B
ui
ld
in
gs

Fa
ca
de
s

Si
m
pl
e
ob
je
ct
s

Po
rt
ra
it
ph
ot
og
ra
ph
s

La
rg
e
vi
st
as

Ve
ge
ta
tio
n

Pl
an
t
pa
tt
er
ns

Li
ch
en

C
lo
ud
s

Tu
rb
ul
en
t
wa
te
r

B
ra
nc
he
s

Je
nA
es
th
et
ic
s0.5

0.6

0.7

0.8

0.9

1

S
el
f-
S
im

il
ar
it
y

(b) Conv2

U
rb
an
sc
en
es

B
ui
ld
in
gs

Fa
ca
de
s

Si
m
pl
e
ob
je
ct
s

Po
rt
ra
it
ph
ot
og
ra
ph
s

La
rg
e
vi
st
as

Ve
ge
ta
tio
n

Pl
an
t
pa
tt
er
ns

Li
ch
en

C
lo
ud
s

Tu
rb
ul
en
t
wa
te
r

B
ra
nc
he
s

Je
nA
es
th
et
ic
s0.5

0.6

0.7

0.8

0.9

1

S
el
f-
S
im

il
ar
it
y

(c) Conv3

U
rb
an
sc
en
es

B
ui
ld
in
gs

Fa
ca
de
s

Si
m
pl
e
ob
je
ct
s

Po
rt
ra
it
ph
ot
og
ra
ph
s

La
rg
e
vi
st
as

Ve
ge
ta
tio
n

Pl
an
t
pa
tt
er
ns

Li
ch
en

C
lo
ud
s

Tu
rb
ul
en
t
wa
te
r

B
ra
nc
he
s

Je
nA
es
th
et
ic
s0.5

0.6

0.7

0.8

0.9

1

S
el
f-
S
im

il
ar
it
y

(d) Conv4

U
rb
an
sc
en
es

B
ui
ld
in
gs

Fa
ca
de
s

Si
m
pl
e
ob
je
ct
s

Po
rt
ra
it
ph
ot
og
ra
ph
s

La
rg
e
vi
st
as

Ve
ge
ta
tio
n

Pl
an
t
pa
tt
er
ns

Li
ch
en

C
lo
ud
s

Tu
rb
ul
en
t
wa
te
r

B
ra
nc
he
s

Je
nA
es
th
et
ic
s0.5

0.6

0.7

0.8

0.9

1

S
el
f-
S
im

il
ar
it
y

(e) Conv5

U
rb
an
sc
en
es

B
ui
ld
in
gs

Fa
ca
de
s

Si
m
pl
e
ob
je
ct
s

Po
rt
ra
it
ph
ot
og
ra
ph
s

La
rg
e
vi
st
as

Ve
ge
ta
tio
n

Pl
an
t
pa
tt
er
ns

Li
ch
en

C
lo
ud
s

Tu
rb
ul
en
t
wa
te
r

B
ra
nc
he
s

Je
nA
es
th
et
ic
s0.5

0.6

0.7

0.8

0.9

1

S
el
f-
S
im

il
ar
it
y

(f) Overall
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(g) Weighted self-similarity

Fig. 2. Self-similarity values calculated for the images in different layers ((a)-(e)) as well as the overall self-similarity results for the images (f). Below each
plot the layer the calculations is done for is presented. (g) The weighted self-similarity values [7] for different datasets.

V. EXPERIMENTAL RESULTS

Earlier, we introduced a new approach for calculating the
self-similarity seen in an image which takes advantage of
the use of CNNs. Based on this measure, we first calculated
the self-similarity values in different convolutional layers for
the images in our dataset. While Figs. 2(a)-(e) provides self-
similarity values for different convolutional layers, Fig. 2(f)
provides the results of the overall self-similarity in different
datasets. Table I provides sample images ordered based on

their self-similarity values at different convolutional layers
along with the overall scores.

Self-similarity in the first convolutional layer: It is known
that, the features in the first convolutional layer are mainly
related to orientations seen in the image. This corresponds
with our results (Fig. 2(a)) where datasets with a dominant
orientation present in the image such as the urban scenes, large
vistas, simple objects, and portrait photograph datasets showed
lower self-similarity values. In the case of datasets where a
dominant orientation was not observed, such as the datasets in



TABLE I
SAMPLE IMAGES ORDERED BASED ON SELF-SIMILARITY VALUES AT DIFFERENT LAYERS AND OVERALL SCORES. SELF-SIMILARITY VALUE DECREASE

FROM LEFT TO RIGHT.

Conv1

Conv2

Conv3

Conv4

Conv5

Overall

the self-similar category and the vegetation and plant patterns
datasets, higher self-similarity values were observed. It was
interesting to observe that paintings which lack a dominant
orientation show higher self-similarity in the first convolutional
layer compared to cases which do have dominant orientations.
A similar observation was also seen in the case of photographs
where a lack of dominant orientation results in high self-
similarity values.

In the case of paintings in the first layer, a small increase
is seen in paintings depicting interior scenes compared to the
paintings with a subject matter of urban scenes and buildings.
This finding could be related to the existence of more dominant
orientations in the two later set of paintings. A drop of values
can also be seen in paintings depicting seascape, port, and
coast as well as sky which are similar to the images in the
large vista dataset. Finally, the increase in the case of the
paintings with a subject matter of flowers and vegetation show
an increase in their self-similarity value similar to the case of
the plant patterns and vegetation photographs.

Self-similarity in the middle layers: Results in the second,
third, and fourth convolutional layers follow the expectations
from the feature maps extracted at the mentioned layers.
Generally, the feature maps in the mentioned layers are
designed to detect textures in the image. This is in line with
the results (Fig. 2(b)-(d)) where datasets containing images
with less texture (urban scene and large vista) show lower self-
similarity values compared to images containing higher texture
(facades and plant pattern correspondingly). The drop in the
self-similarity values for the case of the simple objects and
portrait photograph datasets is also interesting. This could be
due to the nature of the images in the two mentioned dataset
(Fig. 1(l) and (m)) which mainly cover an object(s)/person
with a uniform background. It is interesting to observe high
self-similarity values in the three mentioned convolutional

layers for the case of paintings and photographs with high
texture. Lower values is observed in the case of paintings and
photographs with less texture.

With regards to self-similarity seen in the mid layers of
paintings, similar patterns like the case of photographs can
be seen in the case of paintings. The higher the texture seen
in the painting the higher the self-similarity values in the mid
layers.

Self-similarity in the fifth layer: In the case of the fifth
layer, the features are focused on detecting objects. This again
justifies the difference between the calculated self-similarity
for different datasets. While in the case of datasets which
photographs have been taken from a closer distance (facades
and plant patterns) a number of objects are detected in the
photograph, in the case of photographs taken from a longer
distance single or fewer objects can be detected. This justifies
the higher self-similarity values taken from a closer distance.

Self-similarity values seen in paintings at the fifth
layer show similar pattern to the observation we have in
photographs. A change in self-similarity value can be observed
depending on the number of objects depicted in the painting.
A good example is the slight difference between the portrait
paintings of a single person and the many persons where the
latter show a higher self-similarity value.

Difference between the proposed measure and the
measure of weighted self-similarity: Comparing the overall
results (Fig. 2(f)) to the weighted self-similarity measure
proposed by Amirshahi et al. [7] (Fig. 2(g)) shows interesting
conclusions. On one hand, the weighted self-similarity mea-
sure shows a better accuracy when comparing all 13 datasets
with each other. This is, higher self-similarity values for
natural scenes datasets compared to portrait photographs, man-
made objects, and structures (which at a first glance is what
is expected). On the other hand, the proposed self-similarity



measure show more accurate results inside different image
categories.

Subject matter and art periods in paintings: Finally, we
focused our attention on observing the values calculated in
the case of the subject matters and art periods covered in the
JenAesthetics dataset. It is interesting to observe close self-
similarity values in both cases compared to values calculated
in the different photographic datasets in our experiments
(Fig. 2). Again, this follows previous assumptions that artists
intentionally change statistical properties in their creation.

Difference between paintings and photographs with
same subject matters: Compared to photographs, paintings
on average show higher self-similarity values when the same
subject matter is compared. The existence of dominant ori-
entations in photographs results in lower self-similarity values
compared to paintings in the first convolutional layer. The lack
of texture in photographs could be the reason behind higher
self-similarity values in paintings. It is interesting to observe
close values in the case of portraits which can be due to the
similar nature of portrait photographs and paintings.

VI. CONCLUSION

In conclusion, a new measure of self-similarity based on
using the AlexNet [15] model was introduced. We were not
only able to measure the overall self-similarity of an image but
also evaluated self-similarity at different convolutional layers.
The proposed approach was inspired by a measure previously
introduced by Amirshahi et al. [7]. Compared to the previous
methods, our approach does not only use low level features
in the image but also takes into account mid and high level
features.

The proposed measure was tested on a large dataset of
aesthetic paintings as well as a number of different datasets
of photographs covering different subject matters. The results
show that artworks and natural scenes share similar degrees of
self-similarity. Compared to previous measures, the proposed
approach is able to better differentiate between images in
similar category of images.
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