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Abstract. We investigated if optical flow filters were implicitly learned by a neu-
ral network trained to drive a vehicle. The network was not trained to predict op-
tical flow across the frames, but, through a series of controlled experiments, we
claim that optical flow filters are present in the network. However, this appears
to be only the case for sideways flows more relevant for steering predictions. For
motor throttle predictions, the network looks at the variance of the pixels over
time rather than computing optical flow. In addition, the filters that are likely used
for motor throttle predictions dominate primarily in the middle of the network.

Keywords: Optical Flow ·Motion Selectivity · Self-Driving ·Autonomous Driv-
ing · Convolutional Neural Network · Stereoscopic Disparity

1 Introduction and Relevant Work

Our novel contributions are (1) showing a neural network trained to output two separate
driving tasks (ie, steering and motor throttle predictions) can yield different motion-
sensitive neurons that contribute to different output behaviors, and (2) demonstrating
that we can probe these hidden filters through controlled experiments inspired by psy-
chology. The experiment results indicate that optical flow filters are used for steering
decisions, but variance filters are used for motor throttle decisions.

Our self-driving network takes in video from left and right cameras to predict future
steering and motor throttle values, so there are many possible spatiotemporal cues that
our network could respond to.

We first tried reproducing receptive field visualizations [1], [7]. Shown in Fig 1, we
generated gradient ascent visualizations on the layers for an early CNN (2 convolutional
layers and 2 dense layers) taking in 2 frames at a times. Across frames and cameras for
any given neuron filter, Layer 1 receptive fields appear sensitive to optical flow and
natural stereoscopic disparity.

However, this is hard to quantify, and later layers are even noisier. Furthermore, our
current convolutional network is primarily the SqueezeNet architecture from Iandola, et
al. [2]. We did not want to interpret unstructured visualizations from 1x1 and 3x3 filters.
Instead, though not semantic, we labeled and compared inputs by presumed relevant
features, similar to Zhou, et al. [8]. We then took inspiration from the general feature
manipulation of predictive modeling experiments in psychophysics [6].

We studied optical flow because they provide cues about depth and future trajecto-
ries [5], and there is early evidence for them through gradient ascent analysis.
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Fig. 1. Gradient Ascent Visualizations. Shown are four neurons’ receptive fields from Layer 1 of
our first self-driving network. Each neuron filter is divided into sub-filters, with one sub-filter per
camera, per input frame – hence the 2x2 layout per neuron filter. These filters are appear sensitive
to optical flow and stereoscopic disparity.

2 Experimental Setup

We labeled input videos by their average steer and motor throttle combinations. We only
used videos whose current and future driving combinations had little variation, and the
future ones had to be well predicted by the network. This allowed us to easily test on
salient ego-motion videos containing one type of flow per video.

Fig. 2. Video Speed Manipulation. Natural videos are resampled for the optical flow experiment,
to simulate optical flow changes invariant of other natural features. The network expects 10-
frames of input video to the network, so each manipulated video samples the original frames
to match the appropriate size. Sped up versions can just use future frames, but slowed down
versions need the timepoints in between the normally captured frames, which are created using
the interpolation method by Meyer et al. [4]

As seen in Fig 2, by speeding up and slowing down a given video, we created new
videos with similar optical flow vectors across the visual field, but with more or less
magnitude. We then compared how these affected output driving predictions to test the
relevance of input video motion.

We also controlled the frame order and stereoscopic disparity in the input videos,
after manipulating the video speed. If optical flow is a relevant feature for our driving
predictions, then we should see a change in response with or without properly ordered
time frames, similar to the network in Zhou, et al. [9]. Furthermore, if the network is
attempting to recover depth cues from motion, it could be also affected by stereoscopic
disparity, another source of depth cues present with our network setup.
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3 Results and Discussion

Theoretically, we expected lower frame rate sampling to push predictions toward zero,
and for higher frame rate sampling to do the opposite.

As seen in Fig 3, input video speed manipulation affects both steering and motor
throttle predictions. This suggests potential optical flow sensitivity, but will need to be
explored further.

Fig. 3. Driving Predictions After Input Video Speed Manipulation. The output steer (left) and
motor throttle (right) neurons’ activations with respect to video speed changes are plotted. The
X coordinates are normal video predictions, and the Y coordinates are changed-speed video pre-
dictions. Zero means no behavior for both plots. The fit lines indicate that speeding up the input
video pushes steer predictions to become more extreme, as well as increasing throttle predictions.
The opposite is also true for slower videos.

3.1 Temporal Controls

In Fig 4, steer and motor throttle predictions were plotted for input videos with different
frame orders. Motor throttle predictions appear robust to frame order transformations,
but the steering predictions are not.

As seen in Fig 5, changing around the frame order significantly impacts the video
speed manipulation experiment for steer predictions. We need smooth flow of time,
either forward or reverse, to get results similar to those from the video speed experiment
in Fig 3. This implies optical flow filters are used for steer decisions.

For motor throttle predictions, changing around the frame order does not signif-
icantly impact the video speed manipulation experiment. Fig 6 shows motor throttle
predictions are sensitive to input motion independent of frame order, implying that
variance filters are used. Independent of frame order, little motion would yield little
variance across the frames, whereas high motion would yield the opposite.
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Fig. 4. Steer and Motor Throttle Prediction Changes From Temporal Frame Ordering. Changes
to output steer (left) and motor throttle (right) neurons from input frame ordering are plotted.
The X coordinates are naturally ordered video predictions, and the Y coordinates are predictions
after temporal ordering. The fit lines for the steer plots indicate that randomizing the frame order
nullifies any steering prediction, whereas reversing the order (not in the training set) reverses the
steer prediction. The fit lines for the throttle plots indicate that randomizing and reversing the
frame order had little impact on the throttle prediction.

Fig. 5. Steer Predictions Changes From Temporal Frame Ordering After Video Speed Manipula-
tion. Here, input videos are sped up and slowed down as in Fig 3, but also have their frame orders
changed. We can see that reversing the frame order (left) maintains the natural steer changes
correlated with video speed manipulation (as in Fig. 5), but randomizing the frame order (right)
breaks the natural steer prediction changes after speeding up and slowing down the videos.

3.2 Steer and Motor Speed Results Across Stereo Controls

Lastly, for steer and motor speed predictions, stereoscopic disparity changes do not
significantly impact the video speed experiment. Fig 7 shows that the motion selective
filters for steer and motor speed predictions are independent of stereo features.
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Fig. 6. Motor Throttle Prediction Changes From Temporal Frame Ordering After Video Speed
Manipulation. Here, input videos are sped up and slowed down as in Fig 3, but also have their
frame orders changed. We can see that both randomizing the frame order (left) and reversing the
frame order (right) maintains the natural throttle prediction changes after changing video speed.

Fig. 7. Steer and Motor Prediction Changes From Stereo Effects After Video Speed Manipulation.
Here, input videos are sped up and slowed down as in Fig 3, but also have their stereoscopic
disparity changed. We can see that both switching the stereo (left) and removing the stereo (right)
maintains the natural steer (top) and speed (bottom) prediction changes after speeding up and
slowing down the videos, like in Fig 3.
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4 Conclusion

We show that our network trained to predict steering and motor throttle from stereo
video exhibits different motion-selective behavior for steering and throttle. Through a
series of controlled psychophysical experiments, we demonstrated that both the steer
and motor throttle predictions are correctly affected by varying the motion in the input
video. However, even though both behaviors look similar on the surface, correct steer
predictions are dependent on smooth frame order, whereas motor throttle predictions
are not.

We show that steer decisions are based on optical flow filters in the hidden layers,
whereas motor throttle decisions are based on variance filters.

Even though we did not present this in the paper, we did the same video speed
experiments on hidden layer neurons as we did for the output neurons. By plotting
average neuron activation for changed-speed videos versus normal speed videos, we
can generate the same steer-like and motor-like profiles as in Fig 3. We further found
the distribution of steer-like and motor-like neurons across the layers, arguing that these
ultimately contribute to the final steer and motor throttle predictions. Linear SVMs were
used to find the motor-like neurons based on their activation profiles, with the middle
layers of our network having the most motor-like neurons.

From a theoretical standpoint, motor throttle only affects radially-dependent optical
flow, but steering creates optical flow consistent throughout the visual field. The latter
optical flow is easier for convolutional filters to capture, which we see in our results.

Lastly, consistent with Lundquist et al. [3], depth-sensitive stereo features are more
difficult for convolutional networks to learn than other features. Our results appear to be
robust to changes in stereoscopic disparity. It seems as though motion cues were more
relevant than stereo cues in deciding changes in steer or motor throttle predictions.
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