Generative Approach to Mass Customization of Patient Specific Products

Sergei Azernikov

ML Team Lead @ Glidewell Dental

Generative Approach to Mass Customization of Patient Specific Products

Sergei Azernikov ML Team Lead @ Glidewell Dental

Getting Older

2015

Percentage aged 60 years or older:

30% or more

10 to <30%

<10%

2050

10K cases/day!

10 years ago...

In the near future...

STATE OF THE STATE

In the near future...

How can we make the design

Training AlexNet

Inconsistency is the only thing in which men are consistent.

-- Horace Smith

Restorations

Original

GAN

More anatomical details!

Jyh-Jing Hwang

Glidewell Dental Reconstruction Task

Desiderata

- 1. Shape
 - ➤ Fit into cavity
- 2. Occlusion
 - > Fit with opposing teeth
- 3. Dynamics
 - > Fit for chewing and biting

Image Generation using cGAN

$$\mathcal{L}_{L1}(G) = \mathbb{E}_{x,y,z}[||y - G(x,z)||_1]$$

$$\mathcal{L}_{cGAN}(G,D) = \mathbb{E}_{x,y}[\log D(x,y)] + \mathbb{E}_{x,z}[\log(1 - D(G(x,z))]$$

$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G,D) + \lambda_{L1}\mathcal{L}_{L1}(G)$$

Image-to-Image Translation with Conditional Adversarial Nets.
 P. Isola, J. Zhu, T. Zhou, and A. Efros. CVPR'17.

Reconstruction Quality Quality: IOU = 92%

Sample Dental Reconstruction Results

Functionality Constraints

No penetration into opposing teeth

$$f(d, x, G) > 0$$

A few contact points for chewing and biting

$$\hat{f}(d, x, G) \approx \hat{f}(d, x, y)$$

 $f(d, x, \hat{y}) = d + \gamma(\hat{y} - x)$ is the reconstructed gap distances

Functionality-Aware Generation

$$\mathcal{L}_{\hat{H}}(G) = \mathbb{E}_{x,\tilde{x},d,z,y} \left[\sum_{i} w_{i} \frac{\left(h_{i}(f(d,x,G)) - h_{i}(f(d,x,y)) \right)^{2}}{\max\{h_{i}(f(d,x,y)), 1\}} \right]$$

Penetration Test (85% -> 8%)

Contact Point Test (57% -> 10%)

Sample 3D Test Results

Enhance Anatomy of Natural Tooth

Image Style Transfer

Demo GUI

Deployed Application

TensorRT Runtime

Custom Layer

```
FCFlugin(const void* data, size_t length)
{
    const char* d = reinterpret cast<
    const char*>(data), *a = d;
    movernelWeights = copyToDevice(d*
    sizeof(lnt), *reinterpret cast<const int*>(d);
    d += sizeof(int) + mHernelWeights.
    count * sizeof(float);
    mhiasWeights = copyToDevice(d *
    sizeof(lnt), *reinterpret cast<const int*>(d));
    d += sizeof(int) + mHiasWeights.count
    * sizeof(float);
    asdert(d == a + length);
}
```

CUDA Runtime

ONNX

OPEN NEURAL NETWORK EXCHANGE FORMAT
The new open ecosystem for interchangeable AI models

MARCH 13, 2018 ONNX WORKING GROUPS ESTABLISHED READ MORE

What is ONNX?

ONNX is a open format to represent deep learning models. With ONNX, Al developers can more easily move models between state-of-the-art tools and choose the combination that is best for them. ONNX is developed and supported by a community of partners.

>

