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Target	 Audience.	 Researchers	 and	 developers	 working	 to	 improve	 acquisition	
and	reconstruction	for	fast	and	quantitative	MRI.	
Introduction.	Magnetic	resonance	fingerprinting	(MRF)	can	generate	quantitative	
maps	of	tissue	and	system	parameters		(PD,T1,T2,B0,B1)		from	a	single	acquisition	
[1].	MRF	also	has	the	potential	to	replace	standard	radiological	sequences	by	using	
the	parameter	maps	to	indirectly	synthesize	contrast	images,	such	as	T1-	and	T2-
weighted	images,	Fig.	1,	dotted-blue	lines.	The	concept	of	MRI	synthesis	dates	back	
to	1985	[2]	and	techniques	such	as	QRAPMASTER	[3]	have	recently	been	shown	to	
produce	 clinically	 viable	 images	 [4].	 MR	 fingerprinting	 data	 contains	 rich	
parametric	 information	 and	 can	 be	 used	 for	 contrast	 synthesis.	 However,	 MRI	
synthesis	 techniques	 from	parameters	 are	 significantly	 limited	 by	 biases,	 due	 to	
effects	that	are	difficult	to	simulate,	such	as	time	varying	signals,	partial	voluming,	
flow,	 diffusion,	 magnetization	 transfer,	 and	 others.	 We	 propose	 training	 neural	
networks	 to	 directly	 synthesize	 contrast-weighted	 images	 from	 MRF	 data,	
bypassing	insufficient	parameter	modeling,	Fig.	1,	solid-red	line.	
Methods.	Fingerprinting	acquisition	and	training	data.	We	scanned	13	volunteers	
with	a	1.5T	Philips	 Ingenia	 scanner	using	13	receive	channels.	We	acquired	 four	
consecutive	axial	head	sequences:	T1-weighted	spin	echo,	TE=15	ms,	TR=450	ms;	
T2-weighted	turbo	spin	echo,	TE=110,	TR=2212;	fingerprinting	balanced	fast	field	
echo	 (bFFE)	 sequence	 with	 500	 repetitions,	 constant	 TE=3.3	 and	 TR=20,	 and	
smoothly	 varying	 flip	 angles	 between	 0-60	 degrees.	 The	 spiral	 MRF	 acquisition	
was	reconstructed	to	image	space	after	gridding	and	coil	combination	with	Philips	
CLEAR.	We	used	the	data	from	11	volunteers	for	training	and	validation	and	used	
the	data	from	two	volunteers	only	for	the		final	test	results.	
Indirect	 Contrast	 Synthesis.	 We	 simulated	 MRF	 signals	 with	 the	 extended	 phase	
graph	 (EPG)	 algorithm	 [5][6],	 and	 used	 cosine	 similarity	 to	 match	 nearest	
neighbor	as	in	[1].	The	nearest	neighbor	maps	were	converted	to	T1-weighted	and	
T2-weighted	 contrast	 images	 by	 simulating	 spin	 echo	 sequences:	 !" 1 −
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Direct	 Contrast	 Synthesis.	 The	 neural	 network	 for	 direct	 contrast	 synthesis	 was	
trained	 on	 three	 million	 3x3	 patches	 from	 the	 in	 vivo	 MRF	 data	 using	 an	
architecture	similar	to	the	two-channel	real/imaginary	network	from	[7],	Fig.	2.	
Results.	 Direct	 contrast	 synthesis	 consistently	 produced	 higher	 quality	 results	
than	 the	 indirect	 contrast	 method,	 where	 T1-weighted	 and	 T2-weighted	 both	
contain	 significant	 artifacts,	 especially	 in	 the	vasculature	 and	 cerebrospinal	 fluid	
(CSF),	Fig.	3.	
Discussion	 &	 Conclusion.	We	 show	 that	 our	 deep	 learning	 model	 for	 direct	
contrast	synthesis	can	bypass	incomplete	simulation	models	and	their	associated	
artifacts.	 We	 look	 forward	 to	 expanding	 our	 experiments	 to	 include	 additional	
training	data	as	well	as	additional	contrast	images,	such	as	FLAIR.	

	
Figure	 1.	 Contrast	 synthesis	 from	 MRF:	 indirect	
(blue-dotted	lines)	versus	direct	(solid-red	line).	
	

	
Figure	 2.	 Neural	 network	 architecture	 for	 direct	
contrast	synthesis.	3x3	spatial	patches	are	flattened	
and	 passed	 through	 three	 convolutional	 layers	 and	
then	 three	 fully	 connected	 layers,	 resulting	 in	 a	
contrast	value	prediction	for	the	center	of	the	input	
patch.	Between	each	layer	is	a	ReLU	non-linear	filter.	
The	 number	 of	 feature	 channels	 are	 shown	 above	
each	 block,	 while	 the	 size	 of	 the	 temporal	
dimensions	are	shown	below.	An	L2	loss	function	is	
used	to	penalize	predicted	values	that	do	not	match	
the	acquired	contrast	value.	
	

	
Figure	 3.	 Results	 from	 indirect	 contrast	 synthesis	
(a,d)	 and	 direct	 contrast	 synthesis	 (b,e).	 Note	 that	
both	 indirect	 synthesis	 methods	 present	
inconsistent	 vessel	 contrast	 (white	 arrows),	 most	
noticeably	 in	 the	 superior	 sagittal	 sinus.
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Figure	4: Network	architecture
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