

- Existing methods often use per-pixel supervision and ignore label correlations among pixels.
- Our method captures and matches semantic relations between pixels in the label space.
- Effective representation: Encode spatial structures in distributed, pixel-centric relations.
- Efficient computation: 2 hyper-parameters only, zero overhead during inference.
- Accurate segmentation: Get details right and generalize to visual appearance changes.

Method	Structure Guidance	Training	Run-time Inference	Performance		
CRF [15]	input image	medium	yes	76.53		
GAN [12]	ground-truth labels	hard	no	76.20		
Our AAF	label affinity	easy	no	79.24		

Table 1. Performance (% mIoU) is reported with PSPNet on Cityscapes validation set.

• Pixel-wise labeling loss:

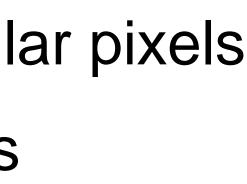
$$\mathcal{L}_{unary}^i = \mathcal{L}_{cross-entropy}^i = -\log \hat{y}_i(l).$$

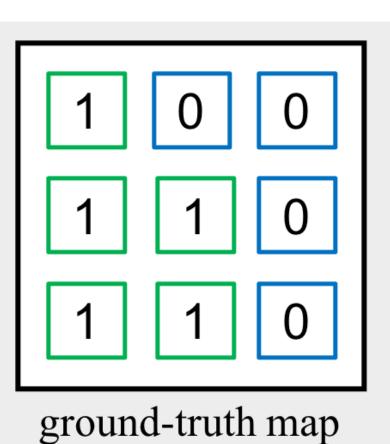
• Region-wise labeling loss:

 $\mathcal{L}_{\text{unary}}^{i}(\hat{y}_{i}, y_{i}) + \lambda \mathcal{L}_{\text{region}}^{i} \left(\mathcal{N}(\hat{y}_{i}), \mathcal{N}(y_{i}) \right)$

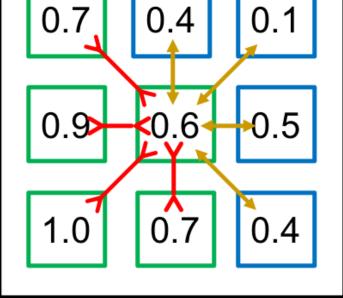
- CRF: label consistency btw visually similar pixels
- GAN: structure priors in label predictions
- Our AAF: pixel-centric label pattern similarity

Adaptive Affinity Fields for Semantic Segmentation Tsung-Wei Ke*, Jyh-Jing Hwang*, Ziwei Liu, Stella X. Yu





Our Model



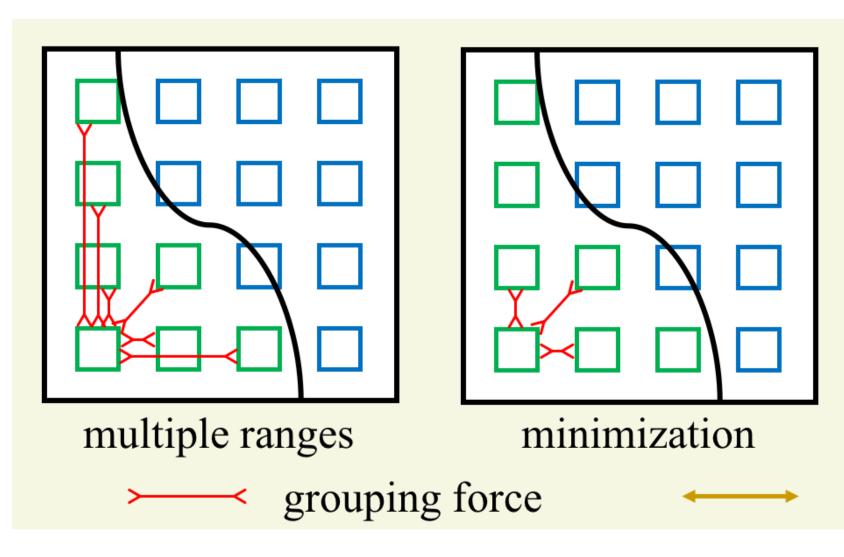
prediction map

grouping force

- Pixels of same / diff. gt labels desire same / diff predictions regardless of actual label values.
- Our affinity field loss:

 $\mathcal{L}_{\text{affinity}}^{ic} = \begin{cases} \mathcal{L}_{\text{affinity}}^{i\bar{b}c} = D_{KL}(\hat{y}_j(c)||\hat{y}_i(c)) \\ \mathcal{L}_{\text{affinity}}^{ibc} = \max\{0, m - D_{KL}(\hat{y}_j(c)||\hat{y}_i(c))\} \end{cases}$

• No message passing or iterative refinement.



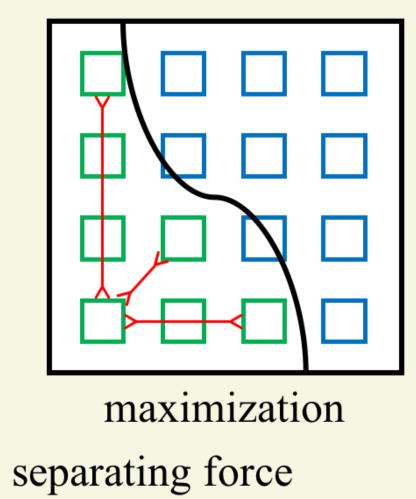
- Affinity fields in small / large neighborhoods encode near / long range structural relations.
- One size does not fit all classes; picking the one with minimal affinity loss results in trivial solutions.
- Select the right size by pushing the affinity field matching to the hard negative cases.
- Our adversarial learning for adaptive kernel sizes:

 $\mathcal{L}_{\text{multiscale}} = \sum \sum w_{ck} \mathcal{L}_{\text{region}}^{ck} \quad s$

$$S^* = \operatorname*{argmin}_{S} \max_{w} \mathcal{L}_{unary} + \mathcal{L}_{w}$$

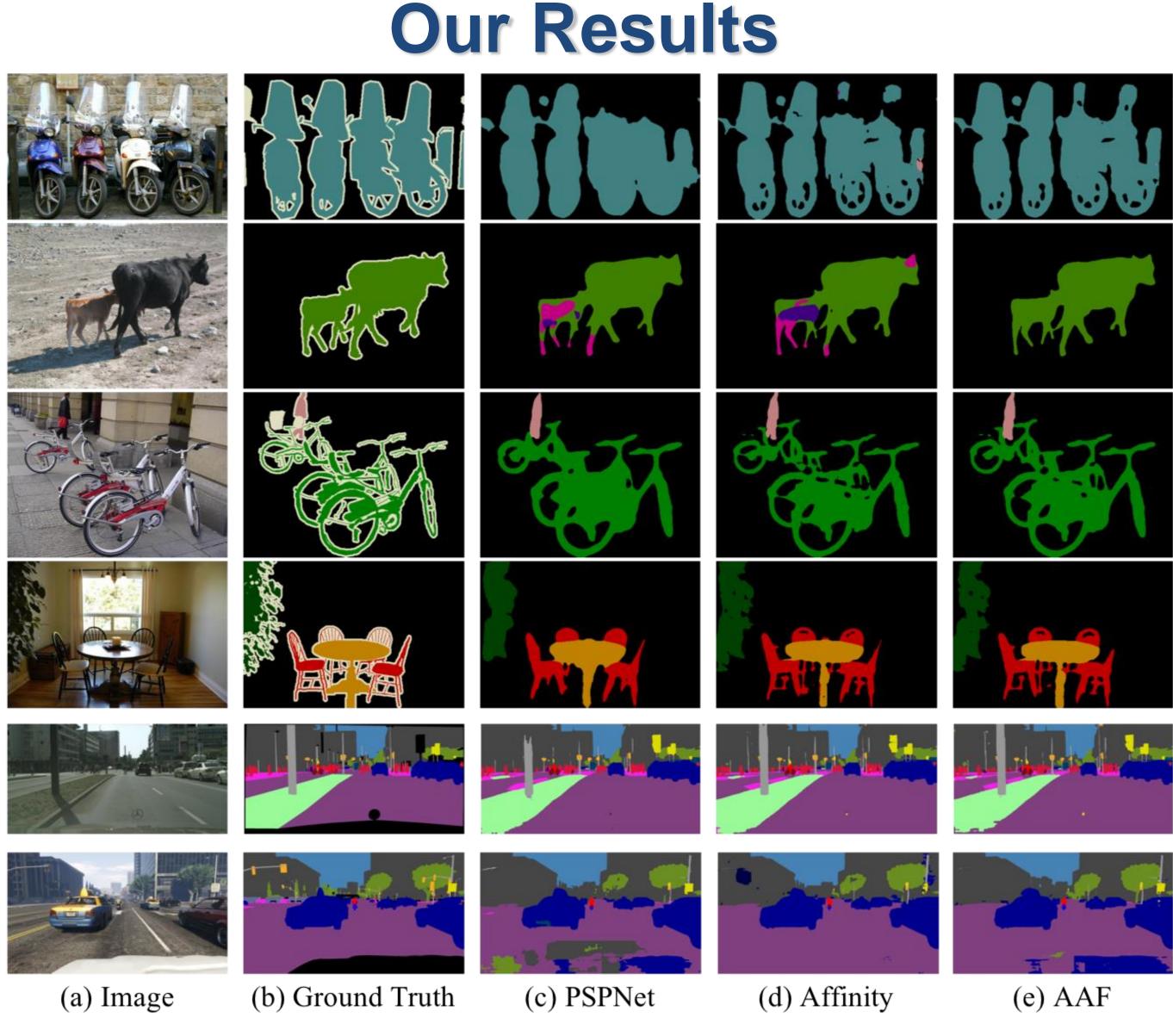
prediction map after error back prop. separating force

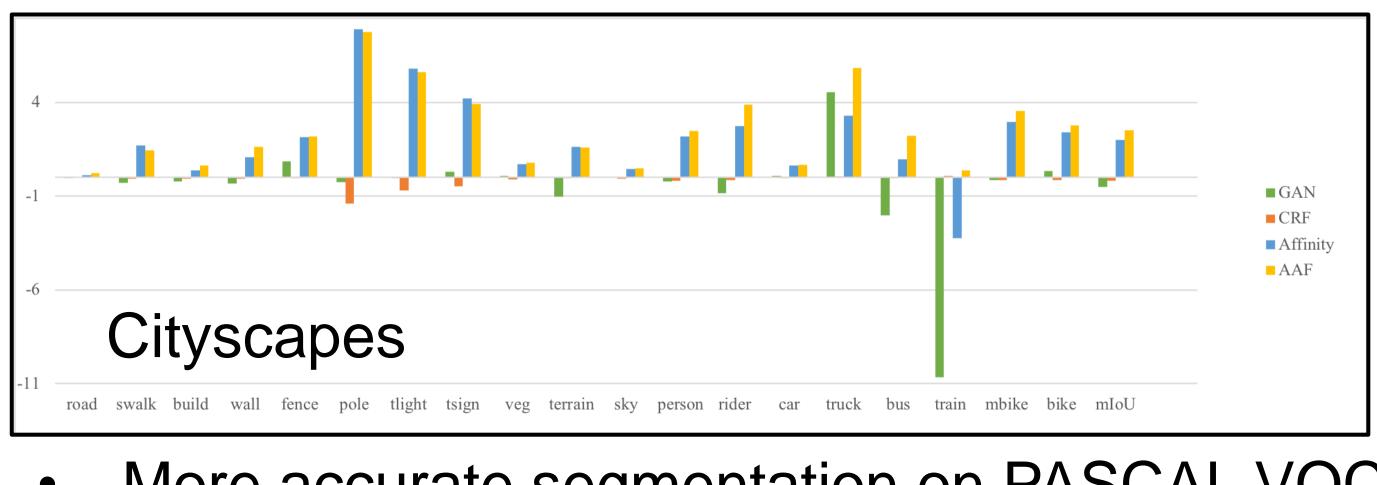
if $y_i(c) = y_j(c)$ otherwise



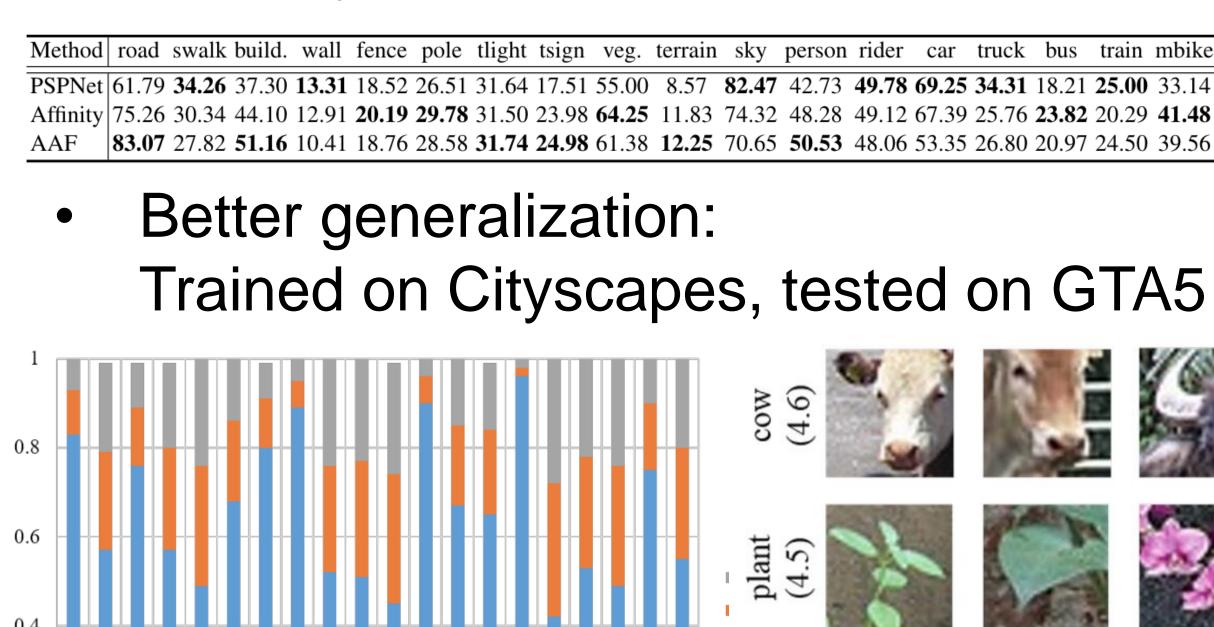
s.t.
$$\sum_{k} w_{ck} = 1$$

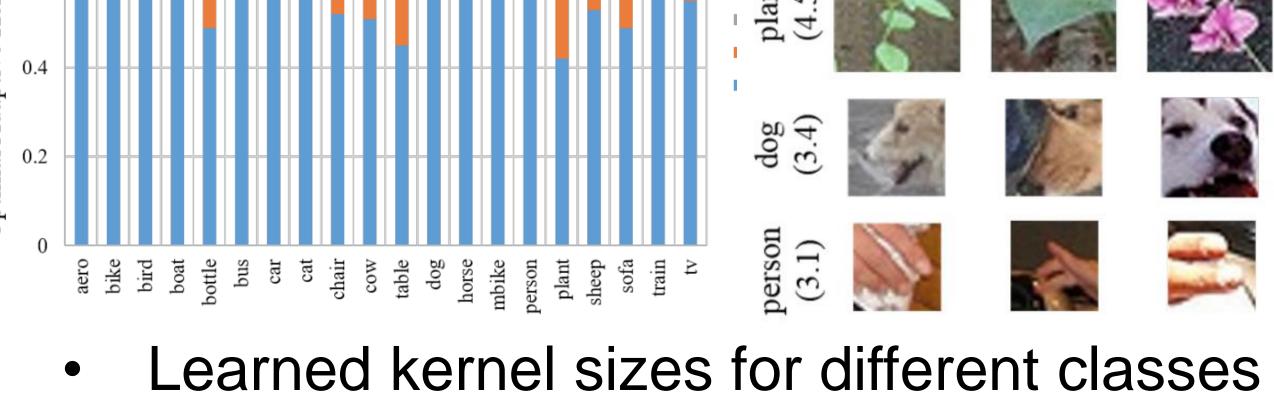
-multiscale

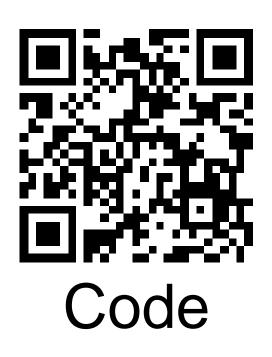




and Cityscapes







More accurate segmentation on PASCAL VOC

tsign	veg.	terrain	sky	person	rider	car	truck	bus	train	mbike	bike	mIoU	pix. acc
17.51	55.00	8.57	82.47	42.73	49.78	69.25	34.31	18.21	25.00	33.14	6.86	35.06	68.78
													75.13
24.98	61.38	12.25	70.65	50.53	48.06	53.35	26.80	20.97	24.50	39.56	9.37	36.52	78.28

plant (4.5)

dog (3.4)

(3.1)

(4.6)

200

Co

tsign	veg.	terrain	sky	person	rider	car	truck	bus	train	mbike	bike	mIoU	pix. acc
													68.78
23.98	64.25	11.83	74.32	48.28	49.12	67.39	25.76	23.82	20.29	41.48	5.63	36.86	75.13
24.98	61.38	12.25	70.65	50.53	48.06	53.35	26.80	20.97	24.50	39.56	9.37	36.52	78.28