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ABSTRACT

Mooney faces are special two-tone images that elicit a rich
impression of identity and facial expression in human ob-
servers. While Mooney faces are important, there exist only
a small number of instances hand-crafted from source photos
which are often no longer available.

We first apply deep learning methods to generate a plau-
sible Mooney face automatically from any face photo. We
are then able to create a large-scale face dataset with paired
grayscale and two-tone images.

We then study how well two-tone versions make face pre-
dictions, using conditional Generative Adversarial Networks.
We show that faces predicted from Mooney images bear strik-
ing resemblance to source photos, and they are better than
two-tone images obtained by global intensity thresholding.
We also demonstrate remarkable face predictions from very
low resolution surveillance photos. Our findings reveal great
potentials of combining deep learning and Mooney faces for
more effective face recognition in a wide range of conditions.

Index Terms— Mooney Faces, Generative Adversarial
Network, Cross-Tone Integration

1. INTRODUCTION

Mooney faces are special two-tone black and white pictures
of faces (Fig.1). Despite the lack of detail, shading, and other
cues, human observers can often effortlessly recognize the
identity, age, gender, and facial expression of Mooney faces
[1, 2, 3]. Even infants can recognize Mooney faces [4, 5, 6].
How such a remarkable perceptual ability is achieved with
such sparse information may be key to understanding human
face recognition in naturalistic settings, where noise, occlu-
sion, and shadows are common.

Mooney faces may be challenging for both human and
computer vision systems because the contours are ambiguous;
it is not clear how they can be segmented into parts based on
bottom-up image-level information alone. While it is trivial to
extract the contours of a shadowy Mooney face, it is not obvi-
ous how to interpret or classify these contours. In a two-tone
Mooney face, each contour could correspond to a meaningful
structure of the face (what is sometimes called an attached
shadow) or to a less meaningful cast shadow border. Cast
shadow borders depend on the nature and direction of the light

Fig. 1. Mooney faces are special two-tone images where hu-
mans can often effortlessly recognize the identity, age, gen-
der, and facial expression of the person. It remains elusive
how such rich perception can be achieved computationally.

source, the shape of the intervening surface, and the surface
on which the shadow is cast. Thus, there is skepticism about
the amount of usable information from cast shadow borders
for human recognition [7]. Attached shadows depend primar-
ily on the structure of the surface, and are therefore useful for
recognition. However, parsing the contour into relevant at-
tached shadow segments and irrelevant cast shadow segments
requires some prior knowledge about the image. For these
reasons, it is thought that Mooney faces require holistic [2] or
top-down information for recognition [2, 3], for example by
template matching [8].

Face recognition from photos is well studied in computer
vision [9, 10], however, current approaches applied out of the
box would fail miserably on two-tone Mooney faces. If there
were an algorithm for recognizing Mooney faces, it could
shed light on human visual processing. It could also shed light
on broader issues in computer vision like face recognition in
noise, occlusion, and extreme lighting conditions, which are
frequently encountered in surveillance videos.

Mooney faces are not well defined; not every binarized
face image appears as a Mooney face. Mooney faces are usu-
ally constructed by artists or scientists manually, in an ad-hoc
manner, requiring selective grayscale image editing and hu-
man subjective judgment, a time and labor-consuming pro-
cess. Such a mechanism for generating Mooney faces does
not scale, severely limiting current approaches of studying
Mooney faces. Our first goal here is to generate a best possi-
ble Mooney face automatically from a face photo. We take a



deep learning approach to train a Mooney face classifier using
a limited number of Mooney faces but many more grayscale
face and non-face photos.

Once we have the ability to generate a plausible Mooney
face from a photo, we essentially create paired data between
grayscale face photos and their Mooney faces. This is an ad-
vantage over traditional Mooney faces, as the source photos
for previously existing Mooney faces are no longer available.
Our second goal here is to use our large-scale paired photo-
Mooney data to train a patch-based conditional Generative
Adversarial Network (GAN) model for recovering grayscale
face photos from two-tone Mooney images. The grayscale
faces predicted by our model on novel Mooney faces are strik-
ingly similar to their source images, even though not a single
photo of the same person has been used during training.

We next study how special Mooney faces are among
two-tone images. We compare faces predicted from Mooney
images and from those two-tone images obtained simply
by global intensity thresholding on source photos. We ob-
serve that Mooney-to-Photo predictions are better, indicating
Mooney images may carve out a special image space that
retains the minimal stable structures of faces.

We apply our Photo-to-Mooney generation Mooney-to-
Photo prediction models successively in order to predict faces
from very low resolution surveillance photos. Our remarkable
results reveal the great potentials of combining Mooney faces
and deep learning for more robust and effective face recogni-
tion.

2. MOONEY FACE CLASSIFIER AND DATASET

We develop a deep learning model to automatically generate
a plausible Mooney face from a given face photo (Fig.2). We
create two-tone Mooney candidates by smoothing and thresh-
olding the face photo with multiple parameter settings. We
train a face classifier to determine whether a two-tone image
is a Mooney face. We feed the Mooney face candidates into
our classifier and the top scorer becomes our automatically
generated Mooney face.

The key to our approach is how to train our Mooney
face classifier, since we only have a very limited number of
Mooney faces found in the literature. We take a two-step
approach. We first use large scale FaceScrub dataset [11] and
non-face ImageNet dataset [12] to pre-train a grayscale face
classifier. We then fine-tune the model with the small number
of Mooney faces using various data augmentation techniques.

Grayscale face classifier. We build our collection of pos-
itive and negative face image examples to train a grayscale
face classifier. Our face photos are 90,000 FaceScrub im-
ages of about 500 identities, whereas our non-face photos are
90,000 images uniformly sampled over 1,000 classes of the
ImageNet dataset. We extract the model from the triplet net-
work of OpenFace [13] and append it with a two-way softmax
layer for representing the output of whether the input image

Fig. 2. Overview of our automatic Mooney face generator.
Given a grayscale image, we generate a set of black/white ver-
sions by smoothing and thresholding, each of which is eval-
uated by our Mooney classifier and the highest scorer is the
final Mooney face.

is a face or not. The input image resolution is set to 96× 96.
We optimize the network with stochastic gradient descent for
40,000 iterations, with mini-batch size 128, momentum 0.9,
and weight decay 0.0005. The learning rate starts at 0.01 and
exponentially decays to 0.001.

Mooney face classifier. There are only a few Mooney
faces publicly available. Our Mooney face examples come
from 48 images of the PICS dataset [14] and our own 80
Mooney faces. It is also known in visual psychology that
Mooney faces are not recognizable when the intensity polar-
ity is reversed or the image is inverted. We compose our non-
Mooney examples of five types of images: 90,000 binarized
ImageNet images, their negative versions (where black pixels
become white pixels, and vice versa), the Mooney face inver-
sions, the Mooney face negatives, and their inverted versions.

We fine-tune the previously trained grayscale face clas-
sifier for Mooney-face classification. We follow the same
hyper-parameter setting for training and testing. We also per-
form additional data processing for augmentation: Mooney
faces are randomly dilated or eroded; ImageNet images are
augmented with Photo-to-Mooney data processing.

Photo-to-Mooney data processing. We generate Mooney
candidates from a source photo by first smoothing it with
a set of k × k kernels by convolution and then binariz-
ing it with thresholds t, where k ∈ {2, 3, 4, 5, 6} and
t ∈ {0.4, 0.45, 0.475, 0.5, 0.525, 0.55, 0.6}. The pixel in-
tensity is rescaled to the range between 0.4 and 0.6 before
thresholding. There could be other alternatives; the goal is
simply to generate relatively fewer black-white blobs that
tend to be more Mooney-like.



Fig. 3. Sample results from our Mooney face generator.

Large-scale Mooney face dataset. We generate 35 can-
didates for each source face photo from the 35 combinations
of k and t. Our Mooney face classifier is used to pick out
the most Mooney-like candidate. If that candidate has a low
score, we reject the face photo. We build our large-scale
Mooney face dataset based on Facescrub images. With a high
Mooney score threshold to ensure the quality of such auto-
matically generated Mooney faces without human judgement
verification, we obtain a Mooney face dataset with 13,460 im-
ages of 523 identities, sample results shown in Fig 3.

3. MOONEY-TO-PHOTO PREDICTION

Our large-scale Mooney face dataset with paired source pho-
tos and Mooney faces opens up exciting new opportunities.
We explore predicting fine-tone faces from two-tone Mooney
faces, emulating human vision’s rich face perception from
two-tone Mooney faces and enabling computer face recog-
nition in low-bit images from a wide range of conditions.

Related Works. Mooney-to-photo prediction is an in-
teresting and challenging research topic in computer vision,

Input Source CCA-256 CCA-3200 PCCA-256 CGAN

Fig. 4. Sample Mooney-to-Photo prediction results.

Method L2 error per pixel: mean ± std

Baseline CCA-256 0.0399± 0.0003
Baseline CCA-3200 0.0446± 0.0003
Baseline PCCA-256 0.0173± 0.0005

Our Patch CGAN 0.0156± 0.0006

Table 1. Mooney-to-face prediction errors on the test set over
intensity range 1. For CCA-k, k is the number of CCA bases.
PCCA denotes patch-wise CCA, patch size 16× 16.

and only a few works have attempted solving the problem.
Shashua et al.[15] use linear models to recover faces from
two-tone images under several restrictive assumptions, e.g.
Lambertian reflection models and 3D face models. Maver et
al.[16] build the eigenspace from a set of grayscale faces,
use linear models to predict the coefficients from input two-
tone images and then reconstruct the grayscale faces. Kemel-
macher et al.[17] propose to reconstruct faces from Mooney
images with prior knowledge of 3D face models. We ap-
proach the problem from a pure data-driven deep learning
perspective, translating a Mooney to a face image directly.

Our Patch CGAN Model. Generative Adversarial Net-
works (GAN) et al.[18] consist of a Discriminator (D) and a
Generator (G). G is trained to produce fake data that looks
real, whereas D learns to classify data as real or fake. This
idea is extended to so-called Conditional GAN (CGAN),
where both D and G are conditioned on extra data [19].

Isola et al.applies CGAN to paired input data for cross-
modal translation from one type of images to another [20].
Their models use an encoder-decoder net with skip connec-
tions for G, which first encodes an input image and then de-



Source 30%-white 40%-white 50%-white 30,40,50% Mooney

Fig. 5. Sample prediction results from two-tone inputs.

two-tone inputs L2 error per pixel: mean ± std

1-bit 30%-white 0.0199± 0.0005
1-bit 40%-white 0.0189± 0.0005
1-bit 50%-white 0.0175± 0.0005

1-bit Mooney 0.0156± 0.0006

3 1-bit (30,40,50)%-white 0.0148± 0.0005

Table 2. Two-tone to grayscale face prediction errors on the
test set over the intensity range of 1.

codes the latent representation to generate an output image.
They use a convolutional Patch CGAN classifier for D, col-
lecting real/fake scores over 16 × 16 patches. We follow
the same Patch CGAN setting to train a CGAN on paired
(Mooney,photo) data in order to predict a plausible grayscale
face photo from a Mooney image.

Baseline CCA methods. Since our D is based on 16×16
patches and our G is based on 128 × 128 images, we apply
correlation coefficient analysis (CCA) at both batch and full
image levels as linear baseline models.

Experimental Setup. We split our new Mooney face
dataset evenly into train, validation and test sets by identity.
We resize the shorter size of each input image to 128 and ran-
domly crop a 128 × 128 patch for training, whereas we only
use center crops for testing. Horizontal flipping is used for
additional data augmentation. We use ADAM [21] to opti-
mize the network. We set the initial learning rate to 0.0002,
momentum 0.5, batch size 1, λL1 100.

Cross-Tone Prediction Results. Fig.4 shows grayscale
face predictions and Table3 prediction errors. Our CGAN
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Fig. 6. Sample prediction results from surveillance photos.

model significantly outperforms CCA models. Our CGAN
predictions are strikingly similar to source photos, despite the
fact that our network has never seen any faces of the test iden-
tities and the inputs are merely two-tone Mooney images. The
linear CCA models have trouble generalizing to unseen faces:
full-image CCA produces grainy results, whereas patch-wise
CCA produces over-smoothed results which lack highlights
and shadows and look more like two-tone Mooney faces.

Are Mooney Faces Special? We generate alternative
two-tone images by intensity thresholding. We binarize each
photo by an intensity percentile. Since ground-truth Mooney
faces have a mean white pixel percentage of 40%, we choose
three percentiles: 30%, 40%, 50%. We also concatenate
these binary versions into a color (3 1-bit) image. We fol-
low the same setting to train and test face predictions from
such two-tone images. Fig. 5 shows prediction results and
Table3 prediction errors. Mooney faces produce better and
non-trivial predictions than simple two-tone images.

Face Prediction from Very Low-Resolution Surveil-
lance Photos. We crop 12× 12 face patches from the VIPeR
surveillance dataset[22] and resize them to 128×128. We ap-
ply our FacePhoto-to-Mooney model to generate its Mooney
version, and then apply our Mooney-to-Photo model to pre-
dict a grayscale photo. Fig 6 shows remarkable 128 × 128
faces predicted from 12× 12 face patches.

Summary. We develop deep learning models for Photo-
to-Mooney generation and Mooney-to-face prediction. We
build the first large-scale paired (face,Mooney) dataset, and
learn two-tone Mooney to full-tone face predictions. We show
that Mooney images produce better and non-trivial face pre-
dictions than intensity thresholded two-tone images. We ap-
ply both our models successively to predict faces from ex-
treme low-resolution face images. These results are useful
for understanding what makes Mooney faces special and for
developing better face recognition methods.
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