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Abstract—Unlike traditional third-person cameras mounted
on robots, a first-person camera, captures a person’s visual
sensorimotor object interactions from up close. In this paper, we
study the tight interplay between our momentary visual attention
and motor action with objects from a first-person camera. We
propose a concept of action-objects—the objects that capture
person’s conscious visual (watching a TV) or tactile (taking a
cup) interactions. Action-objects may be task-dependent but since
many tasks share common person-object spatial configurations,
action-objects exhibit a characteristic 3D spatial distance and
orientation with respect to the person.

We design a predictive model that detects action-objects using
EgoNet, a joint two-stream network that holistically integrates
visual appearance (RGB) and 3D spatial layout (depth and
height) cues to predict per-pixel likelihood of action-objects. Our
network also incorporates a first-person coordinate embedding,
which is designed to learn a spatial distribution of the action-
objects in the first-person data. We demonstrate EgoNet’s predic-
tive power, by showing that it consistently outperforms previous
baseline approaches. Furthermore, EgoNet also exhibits a strong
generalization ability, i.e., it predicts semantically meaningful
objects in novel first-person datasets. Our method’s ability to
effectively detect action-objects could be used to improve robots’
understanding of human-object interactions.

I. INTRODUCTION

Our visual sensation is developed along with the neuromotor
system while interacting with surrounding objects [22, 40, 49,
4, 27]. As the visual sensation and motor signal reinforce each
other, it characterizes the way we progressively interact with
objects in 3D, which provides a strong cue for robotic agents
to identify the objects in action among many surroundings. For
instance, consider a woman entering a canned food corner at a
grocery store as shown in Figure 1. When she schemes through
hundreds of canned foods to find the tuna can that she looks
for, she remains 3-5m from the food stand for efficient search.
Once she finds the tuna, she approaches it (1-3m), and then
reaches her left hand to pick the tuna can (<1m). While she
gazes at the expiration date in the label of the can, the distance
gets smaller (<0.5m). Not only does the tuna can stimulate her
visual attention but it also affects her physical actions, such
as head or hand movements. Can an infrastructured robots in
the grocery store such as Amazon Go1 identify the objects in
action from the sequence of her actions?

We define such object as an action-object—an object that
triggers conscious visual and motor signals. The key properties
of an action-object are: (1) it facilitates a person’s tactile
(touching a cup) or (2) visual (watching a TV) interactions
and (3) it exhibits a characteristic distance and orientation

1https://www.amazon.com/b?node=16008589011
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Fig. 1: We predict action-objects from first-person RGBD
images (best viewed in color) where action-objects are defined
as objects that facilitate people’s conscious tactile (grabbing
a food package) or visual interactions (watching a TV). Left:
a woman approaches a shelf to pick up a food item (red).
Right: The food (action-object) is detected progressively as
she approaches and reaches her hand to pick it up.

with respect to the person. These properties provide strong
cues to predicting person’s behavior, which allow robots to
timely respond to it.

While in-situ wearable sensors such as gaze tracker with
EEG measurements or tactile and force/torque sensors for
muscle movement are viable solutions to identify action-
objects more accurately than distant sensors such as third-
person robot mounted cameras, their integration into our daily
life is highly limited. A fundamental question is “can we
detect action-objects as we observe the person interacting
with her/his environment from a first-person video alone?”.
This is challenging despite recent success of robot/computer
vision systems because (a) a person’s gaze direction does not
necessarily correspond to action-objects. In other words, not
all objects within the person’s field of view are consciously
attended; (b) action-objects are often task-dependent, which
makes it difficult to detect them without knowing the task be-
forehand; (c) action-objects are not specific to object category,
i.e., many object categories correspond to the same action,
e.g., TV and a mirror both afford a seeing action. Therefore,
an object specific model cannot represent action-objects.

In this paper, we address these challenges by leveraging a
first-person stereo camera system and our proposed EgoNet
model, a joint two-stream network that integrates visual ap-
pearance (RGB) and 3D spatial cues (depth and height). These
two pathways are complementary: one of which learns visual
appearance cues, while the other exploits 3D spatial infor-
mation indicative of action-objects. These are combined via
a joint pathway, which incorporates a first-person coordinate
embedding that learns an action-object spatial distribution in
the first-person image. The entire network is jointly optimized
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Scene cooking hotel grocery desk work dining shopping dishwashing
Frames 1030 410 463 491 515 646 674

RGB

DHG

Ground Truth

TABLE I: The summary of our First Person Action-Object RGBD dataset, which captures people performing 7 different
activities. Our dataset contains 4247 frames with RGB, and DHG (depth, height, grayscale image) inputs as well as annotated
per-pixel action-object masks.

to the action-object ground truth that is provided by the camera
wearer. We quantitatively justify the architecture choices of
our EgoNet model and show that it outperforms all prior
approaches for the action-object detection task across multiple
first-person datasets. We also show that EgoNet generalizes
well on a variety of novel datasets, even without being adapted
to a specific task as is commonly done [31, 44, 37].

In conjunction with the EgoNet, we present a new first-
person action-object RGBD dataset that includes object inter-
actions during diverse activities such as cooking, shopping,
dish-washing, working, etc. The camera wearer who is aware
of the task and who can disambiguate conscious visual atten-
tion and subconscious gaze activities provides per-pixel binary
labels of first-person images, which we then use to build our
action-object model in a form of EgoNet.

Our framework is different from a classic object detection
task because action-objects are associated with actions without
explicit object categories. It also differs from a visual saliency
detection because visual saliency does not necessarily corre-
spond to a specific action. Finally, our action-object task differs
from activity recognition because we detect action-objects
by exploiting common person-object spatial configurations
instead of modeling activity-specific interactions, which makes
our model applicable to different activities.

Why Robotics and First-Person? Precisely identifying
action-objects is a fundamental task in human-robot interaction
where a robotic system measures the internal state of humans
and tries to answer questions such as “what is that person
doing?”, “what will he do next?”, “how can I assist him?”.
However, answering these questions from a third-person per-
spective is often challenging because a person’s actions are
captured from a relatively large distance and possibly from a
suboptimal orientation, which makes it difficult to recognize
that person’s actions and understand his intentions. Also a
first-person view contains inherent task-intention via a per-
son’s head and body orientation relative to the objects, and
therefore, the task information does not need to be modeled
explicitly using action recognition as is commonly done in
prior work [37, 31].

II. RELATED WORK

Complementary Object and Activity Recognition in
Third-Person. Actions are performed in the context of objects.

This coupling provides a complementary cue to recognize
actions. Wu et al. [50] leveraged object information to classify
fine-grained activities. Yao and Fei-Fei [52, 53] have presented
a spatial model between human pose and objects for activity
recognition. Some approaches also used low level bag-of-
feature models to learn the spatial relationship between objects
and activities from a single third-person image [10]. Con-
versely, the activity can provide a functional cue to recognize
objects [48, 14, 24]. Such a model becomes even more power-
ful when incorporating the cues of how the object is physically
manipulated [16, 17, 43]. In addition, object affordance can be
learned by simulating human motion in the 3D space [13, 54].
Furthermore, Gori et al. [15] proposed to recognize activities
from a third-person robot’s view using people detections.

Whereas most of these methods require detected people or
body pose as an input, our work leverages a first-person view
and does not need to detect people or human pose a priori.

First-Person Object Detection. There exist multiple prior
methods that explore object detection from first-person images
as a main task [44, 12], or as an auxiliary task for activity
recognition [42, 31, 37, 11, 46] or video summarization [28,
36]. Below we summarize how our action-object detection task
is different from this prior work.

The work in [31, 29] attempts to predict gaze from the first-
person images and use it for activity recognition. However,
we know that a person’s gaze direction does not always
correspond to action-objects but instead capture noisy eye
movement patterns, which may not be useful for activity
recognition. In the context of our problem, the camera wearer
who was performing the task and who can disambiguate
conscious visual attention and subconscious gaze activities
provides per-pixel binary labels of the first-person images,
which we then use to build our action-object model.

The methods in [42, 31] perform object detection and activ-
ity recognition disjointly: first an object detector is applied to
find all objects in the scene, and then those detections are used
for activity recognition without necessarily knowing, which
objects the person may be interacting with. Furthermore, these
methods employ a set of predefined object classes. However,
many object categories can correspond to the same action,
e.g., TV and a mirror both afford a seeing action, and thus, an
object class specific model may not be able to represent the
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Fig. 2: Our proposed EgoNet architecture (best viewed in color) takes as input first-person RGB and DHG images, which encode
2D visual appearance and 3D spatial cues respectively. The fully convolutional RGB pathway then uses the visual appearance
cues, while the fully convolutional DHG pathway exploits 3D spatial information to detect action-objects. The information
from both pathways is combined via the joint pathway, which also implements the first-person coordinate embedding, and then
outputs a per-pixel action-object probability map.

action-objects accurately.
Some prior work focused specifically on handled object

detection [44, 6]. However, action-object detection task also
requires detecting conscious visual interactions that do not
necessarily involve hand manipulation (e.g. watching a TV).
Furthermore, from a development point of view, conscious
visual attention is one way for a person to interact. For
instance, for the babies who lack motor skills, their conscious
visual attention is the only thing that indicates their action-
objects, and thus detecting only handled objects is not enough.

The most relevant to our action-object detection task is
the work in [37] that detects objects of interest for activity
recognition [37]. However, this method is designed specifically
for recognizing various cooking activities, which requires
detecting mostly handled-objects as in [44]. Thus, the au-
thors [37] manually bias their method to recognize objects
near hands. Such an approach may not work for other types
of activities that do not involve hand manipulation such as
watching a TV, interacting with a person, etc.

Finally, none of the above methods, fully exploit common
person-object spatial configuration. We hypothesize that a first-
person view contains inherent task-intention via a person’s
head and body orientation relative to the objects. In other
words, during an interaction with an object, people position
themselves at a certain distance and orientation relative to that
object. Thus, 3D spatial information provides essential cues
that could be used to recognize action-objects. We leverage
such 3D cues, by using first-person stereo cameras, and
building an EgoNet model that uses 3D depth and height cues
to reason about action-objects.

Novelty of Action-Object Concept. We acknowledge that
our defined concept of action-objects overlaps with several
concepts from prior work such as object-action complexes
(OAC) [26], handled-objects [44, 6], objects-in-action [16], or
object affordances [24]. However, we point out that these prior
methods typically focus exclusively on physically manipulated
objects, that are specific to certain tasks (e.g. cooking). Instead,
the concept of action-objects requires detecting not only tactile
but also conscious visual interactions with the objects (e.g.
watching a TV), without making any a-priori assumptions
about the task that the person will be performing as is
commonly done in prior work [44, 6].

Structured Prediction in First-Person Data. A task such
as action-object detection or visual saliency prediction requires
producing a dense probability output for every pixel. To
achieve this goal most prior first-person methods employed a
set of hand-crafted features combined with a probabilistic or
discriminative classifier. For instance, the work in [28] uses
manually engineered set of egocentric features with a linear
regression classifier to assign probabilities to each region in
a segmented image. The method in [2] exploits the combi-
nation of geometric and egocentric cues and trains random
forest classifier to predict saliency in first-person images. The
work in [44] uses optical flow cues and Graph Cuts [5] to
compute handled-object segmentations, whereas [12] employs
transductive SVM to compute foreground segmentation in an
unsupervised manner. Finally, some prior work [29] integrates
a set of hand-crafted features in the graphical model to predict
per pixel probabilities of camera wearer’s gaze.

We note that the recent introduction of the fully convo-
lutional networks (FCNs) [35] has led to remarkable results
in a variety of structured prediction tasks such as edge
detection [3, 51, 25] and semantic image segmentation [8,
55, 34, 32, 38, 20, 9, 7]. Following this line of work, a
recent method [37], used FCNs for joint object segmentation
and activity recognition in first person images using a two
stream appearance and optical flow network with a multi-loss
objective function.

We point out that these prior methods [37, 29, 12, 44, 5]
focus mainly on the RGB or motion cues, which is a very
limiting assumption for an action-object task. When interacting
with an object, people typically position themselves at a certain
distance and orientation relative to that object. Thus, 3D
information plays an important role in action-object detection
task. Unlike prior work, we integrate such 3D cues into our
model for a more effective action-object detection.

Additionally, the way a person positions himself during an
interaction with an object, affects where the object will be
mapped in a first-person image. Prior methods [28, 2] assume
that this will most likely be a center location in the image,
which is a very general assumption. Instead, in this work, we
introduce the first-person coordinate embedding to learn an
action-object specific spatial distribution.

In this work, we show that our proposed additions are simple



and easy to integrate into existing FCN framework, and yet
they lead to a significant improvement in the action-object
detection accuracy in comparison to all the prior methods.

III. FIRST-PERSON ACTION-OBJECT RGBD DATASET

We use two stereo GoPro Hero 3 cameras with 100mm
baseline to capture first-person RGBD videos as shown in
Figure 2. The stereo cameras are synchronized manually and
each camera is set to 1280×960 with 100 fps. The fisheye
lens distortion is pre-calibrated and depth image is computed
by estimating disparities between cameras via dense image
matching with dynamic programming.

Two subjects participated in capturing their daily interac-
tions with objects in activities such as cooking, shopping,
working at their office, dining, buying groceries, dish-washing,
and staying in a hotel room. 7 scenes were recorded and 4229
frames with per-pixel action-objects were annotated by the
subjects with GrabCut [45].

In Table I, we provide a brief summary of our First Person
Action-Object Dataset. The dataset consists of 7 sequences,
which capture various people’s interactions with objects. In
comparison to the existing first-person datasets such as GTEA
Gaze+ [31], which records a person’s interactions only during
a cooking activity, our dataset captures more diverse person’s
interaction with objects. This allows us to leverage common
person-object spatial configurations and build a more general
action-object model without constraining ourselves to a spe-
cific task, as is done in [31]. In the experimental section, we
will show that our model generalizes well on a variety of first-
person datasets even if they contain previously unseen scenes,
objects or activities.

IV. EGONET

In this section, we describe EgoNet, a predictive network
model that detects action-objects from a first-person RGBD
image. EgoNet is a two-stream FCN that holistically integrates
visual appearance, head direction, and 3D spatial cues, and
that is specifically adapted for first-person data via a first-
person coordinate embedding. EgoNet consists of 1) an RGB
pathway that learns object visual appearance cues; 2) a DHG
pathway that learns to detect action-objects based on 3D
depth and height measurements around the person; and a
3) a joint pathway that combines the information from both
pathways, and which also incorporates our proposed first-
person coordinate embedding to model a spatial distribution of
action-objects in the first-person view. The detailed illustration
of EgoNet’s architecture is presented in Figure 2. We now
explain each of EgoNet’s components in more detail.

A. RGB Pathway

An action-object that stimulates person’s visual attention
typically exhibits a particular visual appearance. For instance,
we are more likely to look at the objects that are colored
brightly and stand out from the background visually. Thus, our
model should detect visual appearance cues that are indicative
of action-objects. To achieve this goal we use DeepLab [8],

RGB Input DHG Input RGB Pathway DHG Pathway

Fig. 3: The visualization of the fc7 activation values from
the RGB and DHG pathways. The RGB pathway has higher
activations around objects that stand out visually (e.g. a TV,
a frying pan, a trash bin), while the DHG pathway detects
objects that are at a certain distance and orientation relative to
the person (e.g. a wine glass, the gloves).

which is a fully convolutional adaptation of a VGG net-
work [47]. DeepLab has been shown to yield excellent results
on problems such as semantic segmentation [8]. Just like
the segmentation task, action-object detection also requires
producing a per-pixel probability map. Thus, inspired by the
success of a DeepLab system on semantic segmentation task,
we adopt a pretrained DeepLab’s network architecture as our
RGB pathway.

B. DHG Pathway

An action-object also possesses the following 3D spatial
properties. It exhibits characteristic distance to the person due
to anthropometric constraints, e.g., arm length. For example,
when a man picks up a tuna can, his distance from the can
is approximately 0.5m. The action-object also has a specific
orientation relative to a person because of its design. For
instance, when the person carries a cup, he holds it via the
handle, which determines the pose of the cup with respect
to that person. These 3D spatial properties are essential for
predicting the action-objects.

Considering this intuition, we use our collected first-person
stereo data to encode spatial 3D cues in a DHG (depth, height,
and grayscale) image input. We use depth and height [18] to
represent the 3D environment around the person, and to handle
the pitch movements of the head, i.e., the height information
tells us about the orientation of the person’s head with respect
to 3D environment. In addition, the gray scale image is used to
capture basic visual appearance cues. Note that we do not use
full RGB channels so that the DHG pathway would focus more
on depth and height cues than the visual appearance cues. This
diversifies the information learned by the two pathways, which
allows EgoNet to learn complementary action-object cues. In
Figure 3, we visualize the activation values from the fc7 layer
of RGB and DHG pathway averaged across all channels. Note
that the two pathways learn to detect complementary action-
object cues. Whereas RGB pathway detects objects that are
visually prominent, DHG pathway has high activation values
around the objects with a certain distance and orientation
relative to the person.



RGB Input Judd [23] DeepLab-obj [8] salObj-depth [30] DeepLab-dhg [8] EgoNet

Fig. 4: An illustration of qualitative results on our dataset (the mirror and the fry pan are the action-objects). Unlike other
methods, our EgoNet model correctly recognizes and localizes action-objects in both instances.

C. Joint Pathway

To combine the information from RGB and DHG pathways
for action-object prediction we introduce a joint pathway. The
joint pathway first concatenates 39 × 39 × 4096 dimensional
fc7 features from both RGB and DHG pathways to obtain
a 39 × 39 × 8192 dimensional tensor. This concatenated fc7
tensor is then also concatenated with the downsampled X ∈
R39×39 and Y ∈ R39×39 first-person coordinates, which are
obtained by generating X,Y coordinate mesh-grids associated
with every pixel in the original first-person image, and then
downsampling these mesh-grids by a factor of 8, which is
how much the resolution of the output is reduced inside the
FCN. Then, the input to the joint pathway is a 39×39×8194
dimensional tensor.

Afterwards, we perform a first-person coordinate embed-
ding, which consists of (1) using the first-person spatial
coordinates in a standard convolution operation, and then
(2) attaching another convolutional layer to blend the visual
and spatial information in the new layer. The first-person
coordinate embedding allows EgoNet to use visual and spatial
features in conjunction, which we show is beneficial for an
accurate action-object detection in first-person images.

Intuitively the importance of first-person coordinate embed-
ding can be explained as follows. The way a person positions
himself during an interaction relative to an action-object,
affects a location where such an action-object will be mapped
in a first-person image. For instance, a laptop keyboard is often
seen at the bottom of a first person image because we often
look down at it while typing with our hands. Our proposed
first-person coordinate embedding allows EgoNet to learn such
an action-object spatial distribution, which is different than
most prior work that assumes a universal object spatial prior
(e.g. a center prior) [31, 28].

One may think that our proposed first-person coordinate
embedding should have a minimal effect to the network’s
performance because traditional FCNs also incorporate certain
amount of spatial information in its prediction mechanism.
However, unlike traditional FCNs, EgoNet uses first-person
coordinates as features directly in the 2D convolution opera-
tion, which forces EgoNet to produce a different convolutional
output than traditional FCNs would. Despite the simplicity
of our first-person coordinate embedding scheme, in our

experiments, we show that it significantly boosts the action-
object detection accuracy.

D. Implementation Details

We implement EgoNet using Caffe [21]. The RGB and
DHG pathways are built upon DeepLab architecture [8] The
entire EgoNet network is trained jointly for 3000 iterations,
at the learning rate of 10−6, momentum of 0.9, weight decay
of 0.0005, batch size of 15, and the dropout rate of 0.5. To
optimize the network, we used a per-pixel softmax loss with
respect to the action-object ground truth.

V. EXPERIMENTAL RESULTS

In this section, we present quantitative and qualitative results
of our EgoNet method on (1) our collected First Person
Action-Object RGBD, (2) GTEA Gaze+ [31], (3) Social
Children Interaction [39]. Additionally, to gain a deeper insight
into an action-object detection problem we also include an
action-object human study where 5 human subjects perform
this task on our dataset.

To evaluate an action-object detection accuracy we use
maximum F-score (MF), and average precision (AP) evalua-
tion metrics, which are obtained by thresholding probabilistic
action-object maps at small intervals and computing a preci-
sion and recall curve. Our evaluations provide evidence for
four main conclusions:

• Our human-study indicates that humans achieve better
action-object detection accuracy than the machines.

• We also demonstrate that our EgoNet model outperforms
all other approaches by a considerable margin on our
First-Person Action-Object RGBD dataset.

• Furthermore, we empirically justify the design choices
for our EgoNet model.

• Finally, we show that EgoNet performs well on the other
novel first-person datasets.

A. Action-Object Human Study

To gain a deeper insight into an action-object detection
task, we conduct a human study experiment to see how well
humans can detect action-objects from first-person images. We
randomly select 100 different first-person images from each
of 7 activities from our First-Person Action-Object RGBD



cooking dining grocery hotel desk work shopping dishwashing mean
MF AP MF AP MF AP MF AP MF AP MF AP MF AP MF AP

DeepLab-Obj [8] 0.091 0.033 0.181 0.084 0.052 0.020 0.158 0.054 0.225 0.105 0.110 0.044 0.077 0.021 0.128 0.051
Judd [23] 0.188 0.091 0.160 0.092 0.048 0.021 0.286 0.189 0.523 0.428 0.102 0.051 0.063 0.030 0.182 0.107

GBVS [19] 0.213 0.113 0.188 0.097 0.043 0.014 0.216 0.128 0.499 0.487 0.098 0.047 0.124 0.063 0.197 0.136
Handled+Viewed-Obj 0.243 0.119 0.436 0.357 0.115 0.034 0.122 0.018 0.197 0.062 0.269 0.175 0.140 0.069 0.217 0.119

DeepLab-RGB [8] 0.342 0.220 0.220 0.143 0.134 0.063 0.146 0.065 0.292 0.213 0.158 0.073 0.262 0.128 0.222 0.129
AOP 0.366 0.264 0.195 0.084 0.180 0.086 0.394 0.222 0.421 0.327 0.137 0.074 0.267 0.178 0.280 0.176

FP-MCG [1] 0.224 0.113 0.400 0.283 0.243 0.126 0.274 0.136 0.597 0.389 0.200 0.093 0.281 0.170 0.317 0.187
DeepLab-DHG [8] 0.330 0.230 0.525 0.246 0.208 0.117 0.267 0.159 0.340 0.264 0.301 0.102 0.290 0.154 0.323 0.181
salObj+depth [30] 0.306 0.182 0.551 0.451 0.188 0.105 0.361 0.238 0.501 0.378 0.404 0.284 0.257 0.184 0.367 0.260

EgoNet 0.482 0.415 0.509 0.473 0.193 0.121 0.298 0.183 0.643 0.597 0.242 0.134 0.406 0.272 0.396 0.313
Subject 1 0.419 - 0.576 - 0.408 - 0.477 - 0.556 - 0.357 - 0.415 - 0.458 -
Subject 2 0.453 - 0.551 - 0.327 - 0.444 - 0.516 - 0.518 - 0.436 - 0.464 -
Subject 3 0.453 - 0.604 - 0.197 - 0.453 - 0.581 - 0.340 - 0.439 - 0.438 -
Subject 4 0.506 - 0.631 - 0.358 - 0.489 - 0.579 - 0.371 - 0.407 - 0.477 -
Subject 5 0.488 - 0.660 - 0.227 - 0.444 - 0.598 - 0.373 - 0.435 - 0.461 -

TABLE II: The quantitative results for action-object detection task on our first-person action-object RGBD dataset according
to max F-score (MF) and average precision (AP) metrics. All methods except GBVS were trained on our dataset using a
leave-one-out cross validation. The result indicates that EgoNet has the strongest predictive power with at least 2.9% (MF)
and 5.3% (AP) gain over other methods. We also include our human study results, which suggest that human subjects achieve
better action-object detection accuracy than the machines across most activities from our dataset.

3rd Person 3rd Person+MCG Camera WearerEgoNet

Fig. 5: Qualitative human study results averaged across 5
human subjects. In many cases, third-person human sub-
jects detect action-objects correctly and consistently. However,
some activities such as shopping makes this task difficult even
for a human observer since he does not know what the camera
wearer was thinking.

dataset, and ask human subjects to identify a location of each
action-object in such a first-person image.

We use 100 different images from each activity to keep the
experiment’s duration under an hour. Also, instead of collect-
ing per-pixel or bounding box labels, we ask the subjects to
identify action-objects by clicking at the center of an action-
object, which is very efficient. We collect experimental action-
object detection data from 5 subjects.

To obtain full action-object segmentations from the points
selected by the subjects, we place a Gaussian with a width of
60 around the location of human selected point and project
it on MCG [1] regions as is done in [41]. We acknowledge
that due to the use of Gaussian and the errors in the MCG al-
gorithm, our scheme of obtaining per-pixel segmentations out
of a single point may slightly degrade human subject results
. However, even under current conditions a single experiment
took about an hour or even more to complete. Thus, we believe
that our chosen experiment conditions provided the best trade-
off between the experiment duration and the quality of the
action-object detection results provided by the subjects.

In the bottom of Table II, we provide human subject results
according to the MF evaluation metric. Unlike in our other

experiments, the action-object masks obtained by the human
subjects were skewed towards the extreme probability values
of 1 and 0, which made the AP metric less informative. Thus,
we only used MF score in this case.

Based on these results, we observe that in most cases,
each of the 5 subjects perform better than the machines. We
also observe that the action-object detection results achieved
by the human subjects are quite consistent across most of
different activities from our dataset. This indicates that humans
can perform action-object detection from first-person images
pretty effectively, despite not knowing exactly what the camera
wearer was thinking (but possibly predicting it).

In Figure 5, we also present some qualitative human study
results, where we average the predictions across all 5 human
subjects. These results indicate that in some instances (second
row), detecting action-objects is pretty difficult even for the
human subjects since they do not know what the camera
wearer was thinking.

B. Results on Our Action-Object RGBD Dataset

In Table II we present the results on our First-Person
Action-Object dataset, which contains 4247 annotated images.
All the results are evaluated according to the MF and AP
metrics. We include the following baseline methods in our
comparisons: (1-2) GBVS [19] and Judd [23]: two bottom-
up visual saliency methods; (3) FP-MCG [1]: a multiscale
object segmentation proposal method that was trained on our
first-person dataset; (4) Handled+Viewed Object: our trained
method that detects objects around hands, if no hands are
detected it predicts objects near the center of an image,
which is where a person may typically look at; (5) Action-
Object Prior (AOP): the average action-object location mask
obtained from our dataset; (6) DeepLab-Obj [8]: a DeepLab
network trained for traditional object-segmentation on our
dataset with 41 object classes; (7-8) DeepLab-RGB [8] and
DeepLab-DHG [8]: a DeepLab network trained for action-
object detection using RGB and DHG images as its inputs



breakfast pizza snack salad pasta sandwich burger mean
MF AP MF AP MF AP MF AP MF AP MF AP MF AP MF AP

salObj+depth [30] 0.192 0.113 0.233 0.147 0.303 0.225 0.191 0.112 0.202 0.117 0.346 0.248 0.211 0.108 0.240 0.153
DeepLab-RGB [8] 0.358 0.291 0.342 0.261 0.507 0.504 0.344 0.274 0.339 0.291 0.475 0.435 0.348 0.294 0.388 0.336

Judd [23] 0.310 0.223 0.318 0.214 0.522 0.482 0.404 0.329 0.393 0.315 0.452 0.374 0.403 0.304 0.400 0.320
FP-MCG [1] 0.364 0.281 0.456 0.380 0.486 0.399 0.401 0.310 0.411 0.346 0.511 0.454 0.321 0.207 0.422 0.340

AOP 0.403 0.307 0.499 0.443 0.488 0.380 0.337 0.211 0.408 0.273 0.472 0.375 0.369 0.268 0.425 0.322
DeepLab-DHG [8] 0.400 0.344 0.440 0.429 0.577 0.564 0.429 0.374 0.467 0.429 0.456 0.419 0.368 0.304 0.448 0.409

EgoNet 0.433 0.357 0.475 0.383 0.607 0.568 0.512 0.450 0.532 0.505 0.576 0.486 0.454 0.358 0.513 0.443

TABLE III: Quantitative results on GTEA Gaze+ dataset for an action-object detection task. To test each model’s generalization
ability on GTEA Gaze+ dataset, we train each method only on our First-Person Action-Object RGBD dataset. Based on the
results, we observe that EgoNet exhibits the strongest generalization power.

RGB DeepLab-RGB DeepLab-DHG EgoNet

Fig. 6: Qualitative results on GTEA Gaze+ dataset. EgoNet
predicts action-objects more accurately and with better local-
ization compared to DeepLab [8] based methods.

respectively; (9) salObj+depth [30]: a salient object detection
system, which we adapt to also handle a depth input.

Note that all methods except for GBVS are trained on
our dataset. The training is done using a leave-one-out cross
validation as is standard. Based on the results in Table II, we
observe that EgoNet outperforms all baseline methods by at
least 2.9% (MF) and 5.3% (AP). In Figure 4, we also show our
qualitative action-object results. Unlike other methods, EgoNet
correctly detects and localizes action-objects in all cases.

C. Analysis of EgoNet Architecture

In this section, we quantitatively characterize the design
factors of our EgoNet architecture on our dataset.

Are Separate RGB and DHG Pathways Necessary? An
intuitive alternative to our EgoNet architecture is a single-
stream network that concatenates RGB, DHG, and first-person
coordinate inputs and feeds them through the network. We test
such a baseline and report that it yields 0.249 and 0.166 MF
and AP scores, which is significantly worse than 0.396 (MF)
and 0.313 (AP) attained by our EgoNet model.

What is the Contribution of RGB and DHG Pathways?
Our EgoNet model predicts action-objects based on the visual
appearance and 3D spatial cues, which are learned in the
separate RGB and DHG pathways. To examine how important
each pathway is, we train two independent RGB and DHG
single-stream networks (both with the first-person coordinate
embedding). Whereas the RGB network obtains 0.363 and
0.250 MF and AP scores, the DHG network achieves 0.369
and 0.208 MF and AP results. These results indicate that the
3D spatial cues are equally or even more informative than the
RGB cues.

How Beneficial is the Joint Pathway? We note that
combining RGB and DHG pathways via the joint pathway
yields 0.396 and 0.313 according to MF and AP metrics,

Fig. 7: Our results on Social Children Interaction Dataset.
Strong EgoNet’s generalization power allows it to predict
action-objects in a novel scenes, that contain previously unseen
objects, and activities.

which is a substantial improvement over the independent RGB
and DHG networks, which achieve 0.363 (MF), 0.250 (AP),
and 0.369 (MF), 0.208 (AP) scores respectively. This suggests,
that RGB and DHG pathways learn complementary action-
object information, and combining them via the joint pathway
is beneficial.

Comparison with a Deeper Single Stream RGB Model.
We also include a single-stream network baseline that only
uses RGB information, but that has about 17M more param-
eters than the RGB pathway in our EgoNet architecture. We
report that such a baseline achieves 0.363 (MF) score, which
is identical to the RGB pathway in our EgoNet’s design. Thus,
these results indicate that simply adding more parameters to
a single-stream network does not lead to better results.

Do First-Person Coordinates Help? Earlier we claimed
that using first-person coordinates in the joint pathway is es-
sential for a good action-object detection performance. To test
this claim, we train a network with an identical architecture
as EgoNet except that it does not use first-person coordinates.
Such a network yields 0.333 and 0.232 MF and AP scores,
which is considerably lower than 0.396 and 0.313 MF and
AP results produced by our proposed EgoNet model, that
uses first-person coordinates. Such a big accuracy difference
between the two models suggests that first-person coordinates
play a crucial role in an action-object detection task.

Is the Coordinate Embedding Useful? In the previous
section, we also claimed that the first-person coordinate
embedding (see Fig. 2) is crucial for a good action-object
detection accuracy. To test this claim we train a network with
an identical architecture as EgoNet except that we remove
the last layer before softmax loss (i.e. where the coordinate
embedding is performed). We observe that the network that
does not use the coordinate embedding produces a 0.313 and



video 1 video 2 video 3 video 4 video 5 video 6 video 7 video 8 video 9 mean
MF AP MF AP MF AP MF AP MF AP MF AP MF AP MF AP MF AP MF AP

DeepLab-RGB [8] 0.113 0.062 0.125 0.069 0.116 0.073 0.132 0.073 0.089 0.044 0.093 0.046 0.113 0.060 0.090 0.036 0.160 0.082 0.115 0.061
DeepLab-DHG [8] 0.144 0.079 0.147 0.074 0.126 0.073 0.123 0.065 0.095 0.045 0.100 0.047 0.110 0.056 0.089 0.038 0.171 0.092 0.123 0.063

FP-MCG [1] 0.181 0.096 0.164 0.072 0.126 0.058 0.134 0.061 0.120 0.044 0.117 0.043 0.132 0.049 0.103 0.048 0.194 0.107 0.141 0.064
AOP 0.250 0.098 0.272 0.110 0.245 0.101 0.258 0.104 0.257 0.101 0.246 0.099 0.240 0.096 0.256 0.105 0.265 0.138 0.254 0.106

EgoNet 0.325 0.236 0.317 0.217 0.317 0.211 0.330 0.225 0.246 0.133 0.232 0.142 0.237 0.144 0.247 0.140 0.318 0.212 0.285 0.185

TABLE IV: Quantitative results on Social Children Interaction dataset [39] for the visual attention prediction task. The dataset
contains 9 first-person videos of children performing activities such as playing cards games, etc. We note that to test each
method’s generalization ability, none of the methods were trained on this dataset. We show that EgoNet outperforms all the
other methods on this dataset, which indicates strong EgoNet’s generalization power.

0.202 MF and AP scores, which is considerably lower than
0.396 and 0.313 achieved by our full EgoNet model.

D. Results on GTEA Gaze+ Dataset

To show strong EgoNet’s generalization ability, in Table III,
we present our action-object detection results on the GTEA
Gaze+ dataset [31], which consists of first-person videos that
capture people cooking 7 different meals. The dataset provides
the annotations of objects that people are interacting with
during a cooking activity. In comparison to our First-Person
Action-Object RGBD dataset, GTEA Gaze+ contains many
novel scenes, and many new object classes, which makes
it a good dataset for testing EgoNet’s generalization ability.
Additionally, we note that, GTEA Gaze+ does not have depth
information in the scene. Thus, we augment the dataset with
depth predictions using [33].

Note that to test each model’s generalization ability, all
the methods are trained only on our First-Person Action-
Object RGBD dataset. Based on the results in Table III, we
can conclude that EgoNet shows the strongest generalization
power: EgoNet achieves 0.513 (MF) and 0.443 (AP), whereas
the second best method yields 0.448 (MF) and 0.409 (AP). We
also include qualitative detection results from this dataset in
Figure 6, which shows that our method detects action-objects
more accurately and with much better localization than the
DeepLab-FCN [8] baselines.

E. Results on Social Children Interaction Dataset

Furthermore, In Table IV, we present our results on Social
Children Interaction dataset [39], which includes 9 first person
videos of three children playing a card game, building block
towers, and playing hide-and-seek. The dataset consists of
2189 frames that are annotated with the location of children’s
attention location [39]. To evaluate all methods on this dataset,
we place a fixed size Gaussian around the ground truth
attention location, and use it as our ground truth mask to
evaluate the results according to MF and AP metrics. Similar
to GTEA Gaze+ dataset, this dataset only contains RGB
images so we complement it with the depth predictions using
the method in [33].

To test the generalization power, we train each method only
on our First-Person Action-Object RGBD dataset, and then
test it on Social Children Interaction dataset. We report that
EgoNet achieves 0.285 and 0.185 MF and AP, whereas the

Fig. 8: A 3D visualization of the detected action-objects from
our RGBD dataset (Top: using a phone, Bottom: cooking a
meal). The details of how humans interacted with these objects
could be used to teach robots how to manipulate such objects.

second best method yields 0.254 (MF) and 0.106 (AP) scores.
We also illustrate several qualitative predictions in Figure 7.

F. Visualizing the Detected Action-Objects in 3D

In Figure 8, we also present a 3D visualization of the
detected action-objects from our RGBD dataset. The recovered
3D spatial layout of the detected action-objects could be used
to teach robots how to grasp and manipulate action-objects
based on how humans interacted with these objects.

VI. CONCLUSIONS

In this work, we use a concept of an action-object to study
a person’s visual attention and his motor actions from a first-
person visual signal. To do this, we introduce EgoNet, a two-
stream network that holistically integrates visual appearance,
head direction, 3D spatial cues, and that also employs first-
person coordinate embedding for an accurate action-object
detection from first-person RGBD data. Our EgoNet leverages
common person-object spatial configurations, which allows it
to predict action-objects without an explicit adaptation to a
specific task as is done in prior work [31, 44, 37]. We believe
that EgoNet’s predictive power and its strong generalization
ability makes it well suited for the applications, that require
robots to understand how a person interacts with various
objects, and using that information for assisting people.
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