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Abstract

Spectral embedding provides a framework for solving

perceptual organization problems, including image segmen-

tation and figure/ground organization. From an affinity

matrix describing pairwise relationships between pixels, it

clusters pixels into regions, and, using a complex-valued ex-

tension, orders pixels according to layer. We train a convo-

lutional neural network (CNN) to directly predict the pair-

wise relationships that define this affinity matrix. Spectral

embedding then resolves these predictions into a globally-

consistent segmentation and figure/ground organization of

the scene. Experiments demonstrate significant benefit to

this direct coupling compared to prior works which use ex-

plicit intermediate stages, such as edge detection, on the

pathway from image to affinities. Our results suggest spec-

tral embedding as a powerful alternative to the conditional

random field (CRF)-based globalization schemes typically

coupled to deep neural networks.

1. Introduction

Systems for perceptual organization of scenes are com-

monly architected around a pipeline of intermediate stages.

For example, image segmentation follows from edge de-

tection [12, 1, 2, 7, 4]; figure/ground, occlusion, or depth

layering follows from reasoning over discrete contours or

regions [27, 16, 21, 36, 18] with some systems also re-

liant on motion cues [30, 15, 32, 31]. This trend holds

even in light of rapid advancements from designs centered

on convolutional neural networks (CNNs). Rather than di-

rectly focus on image segmentation, recent CNN architec-

tures [14, 3, 28, 4] target edge detection. Turaga et al. [33]

make the connection between affinity learning and seg-

mentation, yet restrict affinities to be precisely local edge

strengths. Pure CNN approaches for depth from a single

image do focus on directly constructing the desired out-

put [9, 8]. However, these works do not address the problem

of perceptual grouping without fixed semantic classes.

We engineer a system for simultaneous segmentation and

figure/ground organization by directly connecting a CNN to
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Figure 1. System architecture. We send an image through a CNN

which is trained to predict the grouping and ordering relations be-

tween each of the n pixels and its neighbors at k displacements

laid out in a fixed stencil pattern. We assemble these n×2k pixel-

centric relations into a sparse n×n complex affinity matrix between

pixels, each row indicating a pixel’s affinity with others. Shown

above is the row for the pixel at the center of a log-polar sampling

pattern; its positive/negative relations with neighbors are marked

by red/cyan squares overlaid on the image. We feed the pair-

wise affinity matrix into Angular Embedding for global integra-

tion, producing an eigenvector representation that reveals figure-

ground organization: we know not only which pixels go together,

but also which pixels go in front.

an inference algorithm which produces a globally consis-

tent scene interpretation. Training the CNN with a target

appropriate for the inference procedure eliminates the need

for hand-designed intermediate stages such as edge detec-

tion. Our strategy parallels recent work connecting CNNs

and conditional random fields (CRFs) for semantic segmen-

tation [6, 20, 35]. A crucial difference, however, is that we

handle the generic, or class independent, image partitioning

problem. In this context, spectral embedding, and specifi-

cally Angular Embedding (AE) [37, 38], is a more natural

inference algorithm. Figure 1 illustrates our architecture.

Angular Embedding, an extension of the spectral relax-

ation of Normalized Cuts [29] to complex-valued affinities,

provides a mathematical framework for solving joint group-



ing and ranking problems. Previous works established this

framework as a basis for segmentation and figure/ground or-

ganization [22] as well as object-part grouping and segmen-

tation [24]. We follow the spirit of [22], but employ major

changes to achieve high-quality figure/ground results:

• We reformulate segmentation and figure/ground layer-

ing in terms of an energy model with pairwise forces

between pixels. Pixels either bind together (group) or

differentially repel (layer separation), with strength of

interaction modulated by confidence in the prediction.

• We train a CNN to directly predict all data-dependent

terms in the model.

• We predict interactions across multiple distance scales

and use an efficient solver [23] for spectral embedding.

Our new energy model replaces the ad-hoc boundary-

centric interactions employed by [22]. Our CNN replaces

hand-designed features. Together they facilitate learning

of pairwise interactions across a regular stencil pattern.

Choosing a sparse stencil pattern, yet including both short-

and long-range connections, allows us to incorporate multi-

scale cues while remaining computationally efficient.

Section 2 develops our model for segmentation and fig-

ure/ground while providing the necessary background on

Angular Embedding. Section 3 details the structure of our

CNN for predicting pairwise interaction terms in the model.

As our model is fully learned, it could be trained accord-

ing to different notions of segmentation and figure/ground.

For example, consistent definitions for figure/ground in-

clude true depth ordering as in [9], object class-specific

foreground/background separation as in [24], and bound-

ary ownership or occlusion as in [27, 13, 22]. We focus

on the latter and define segmentation as a region partition

and figure/ground as an ordering of regions by occlusion

layer. The Berkeley segmentation dataset (BSDS) provides

ground-truth annotation of this form [25, 13]. We demon-

strate segmentation results competitive with the state-of-

the-art on the BSDS benchmark [11], while simultaneously

generating high-quality figure/ground output.

The occlusion layering interpretation of figure/ground is

the one most likely to be portable across datasets; it corre-

sponds to a mid-level perceptual task. We find this to be pre-

cisely the case for our learned model. Trained on BSDS, it

generates quite reasonable output when tested on other im-

age sources, including the PASCAL VOC dataset [10]. We

believe this to be a significant advance in fully automatic

perceptual organization. Section 4 presents experimental

results across all datasets, while Section 5 concludes.

2. Spectral Embedding & Generalized Affinity

We abstract the figure/ground problem to that of assign-

ing each pixel p a rank θ(p), such that θ(·) orders pixels by

Given Pairwise:

Ordering Θ(·, ·)

Confidence C(·, ·)

Recover:

Global ordering θ(p)

p → z(p) = eiθ(p)
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Figure 2. Angular Embedding [38]. Given (C,Θ) capturing pair-

wise relationships between nodes, the Angular Embedding task is

to map those nodes onto the unit semicircle, such that their result-

ing absolute positions respect confidence-weighted relative pair-

wise ordering (Equation 1). Relative ordering is identified with

rotation in the complex plane. For node p, θ(p) = arg(z(p)) re-

covers its global rank order from its embedding z(p).

occlusion layer. Assume we are given estimates of the rel-

ative order Θ(p, q) between many pairs of pixels p and q.

The task is then to find θ(·) that agrees as best as possible

with these pairwise estimates. Angular Embedding [38] ad-

dresses this optimization problem by minimizing error ε:

ε =
∑

p

∑
q C(p, q)

∑
p,q C(p, q)

· |z(p)− z̃(p)|2 (1)

where C(p, q) accounts for possibly differing confidences

in the pairwise estimates and θ(p) is replaced by z(p) =
eiθ(p). As Figure 2 shows, this mathematical convenience

permits interpretation of z(·) as an embedding into the com-

plex plane, with desired ordering θ(·) corresponding to ab-

solute angle. z̃(p) is defined as the consensus embedding

location for p according to its neighbors and Θ:

z̃(p) =
∑

q

C̃(p, q) · eiΘ(p,q) · z(q) (2)

C̃(p, q) =
C(p, q)∑
q C(p, q)

(3)

Relaxing the unit norm constraint on z(·) yields a gener-

alized eigenproblem:

Wz = λDz (4)

with D and W defined in terms of C and Θ by:

D = Diag(C1n) (5)

W = C • eiΘ (6)

where n is the number of pixels, 1n is a column vector of

ones, Diag(·) is a matrix with its vector argument on the

main diagonal, and • denotes the matrix Hadamard product.

For Θ everywhere zero (W = C), this eigenproblem is

identical to the spectral relaxation of Normalized Cuts [29],

in which the second and higher eigenvectors encode group-

ing [29, 2]. With nonzero entries in Θ, the first of the now



❚
②
♣
❡

❘
❡
♣
r
❡
s
❡
♥
t�
t✁
♦
♥

b

✂

b

q

❈✄☎✆✐❣✉✄✉✝ ✞✟❣✐✄☎

✶✠✶

✡

✠✡

b✂ b q

❆♠☛✐❣✉✄✉✝ ❇✄✉☎❞❛☞✌

✶✠✶

✡

✠✡

b

b✂ b q

●☞✄✉☎❞✦ ❋✐❣✉☞✟

✶✠✶

✡

✠✡

b✂ b q

❋✐❣✉☞✟ ✦●☞✄✉☎❞

✶✠✶

✡

✠✡

Figure 3. Complex affinities for grouping and figure/ground.

An angular displacement, corresponding to relative figure/ground

or depth ordering, along with a confidence on that displacement,

specify pairwise local grouping relationships between pixels. A

single complex number encodes confidence as magnitude and dis-

placement as angle from the positive real axis. Four basic interac-

tion types span the space of possible pairwise pixel relationships.

Contiguous region: Pixels p and q lie in the same region. A vec-

tor along the positive real axis represents high confidence on zero

relative displacement. Ambiguous boundary: Pixels p and q lie in

different regions whose interface admits no cues for discriminating

displacement. The shared boundary could be a surface marking or

depth discontinuity with either of p or q in front. The origin of the

complex plane represents zero confidence on the correct relation-

ship. Figure transition: As boundary convexity tends to indicate

foreground, moving from p to q likely transitions from ground to

figure. We have high confidence on positive angular displacement.

Ground transition: In the reverse case, q is ground with respect to

p, and the complex representation has negative angle.

complex-valued eigenvectors is nontrivial and its angle en-

codes rank ordering while the subsequent eigenvectors still

encode grouping [22]. We use the same decoding procedure

as [22] to read off this information.

Specifically, given eigenvectors, {z0, z1, ..., zm−1}, and

corresponding eigenvalues, λ0 ≤ λ1 ≤ ... ≤ λm−1, solving

Equation 4, θ(p) = arg(z0(p)) recovers figure/ground or-

dering. Treating the eigenvectors as an embedding of pixels

into C
m, distance in this embedding space reveals percep-

tual grouping. We follow [2, 22] to recover both bound-

aries and segmentation from the embedding by taking the

(spatial) gradient of eigenvectors and applying the water-

shed transform. This is equivalent to a form of agglomera-

tive clustering in the embedding space, with merging con-

strained to be between neighbors in the image domain.

A remaining issue, solved by [24], is to avoid circular

wrap-around in angular span by guaranteeing that the solu-

tion fits within a wedge of the complex plane. It suffices to

rescale Θ by π
2 (1

T
n |Θ|1n)

−1 prior to embedding.

Having chosen Angular Embedding as our inference pro-

cedure, it remains to define the pairwise pixel relationships

C(p, q) and Θ(p, q). In the special case of Normalized Cuts,

C(p, q) represents a clustering affinity, or confidence on

zero separation (in both clustering and figure/ground). For
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Figure 4. Generalized affinity. Combining the base cases in Fig-

ure 3, we express generalized affinity W as the sum of a binding

force acting along the positive real axis, and figure and ground

displacement forces acting at angles. In absence of any strong

boundary, the binding force dominates, linking pixels together. In

presence of a strong and discriminative boundary, either the fig-

ure or ground force dominates, triggering displacement. Under

conditions of uncertainty, all forces are weak. Left: The plot for

|W | illustrates total force strength, while the plot for ∠W shows

the dominant force. Right: Complex-valued W varies smoothly

across its configuration space, yet exhibits four distinct modes

(binding, figure, ground, uncertain). Smooth transitions occur in

the region of uncertainty at the origin.

the more general case, we must also predict non-zero fig-

ure/ground separation values and assign them confidences.

Let us develop the model in terms of probabilities:

e(p) = Pr(p lies on a boundary) (7)

b(p, q) = Pr(seg(p) 6= seg(q)) (8)

f(p, q) = Pr(figural(p, q) | seg(p) 6= seg(q))) (9)

g(p, q) = Pr(figural(q, p) | seg(p) 6= seg(q))) (10)

where seg(p) is the region (segment) containing pixel p and

figural(p, q) means that q is figure with respect to p, ac-

cording to the true segmentation and figure/ground order-

ing. b(p, q) is the probability that some boundary separates

p and q. f(p, q) and g(p, q) are conditional probabilities of

figure and ground, respectively. Note g(p, q) = 1− f(p, q).
There are three possible transitions between p and q:

none (same region), ground → figure, and figure → ground.

Selecting the most likely, the probabilities of erroneously

binding p and q into the same region, transitioning to fig-

ure, or transitioning to ground are respectively:

EB(p, q) = b(p, q) (11)

EF (p, q) = 1− (1− e(p))b(p, q)(1− e(q))f(p, q) (12)

EG(p, q) = 1− (1− e(p))b(p, q)(1− e(q))g(p, q) (13)

where (1 − e(p))b(p, q)(1 − e(q)) is the probability that

there is a boundary between p and q, but that neither p nor







Image Ground-truth F/G Spectral F/G

Maire [22]

Spectral F/G Spectral Boundaries Segmentation + F/G

Our System

Figure 7. Image segmentation and figure/ground results. We compare our system to ground-truth and the results of Maire [22]. Spectral

F/G shows per-pixel figure/ground ordering according to the result of Angular Embedding. The colormap matches Figure 2, with red

denoting figure and blue denoting background. Spectral boundaries show soft boundary strength encoded by the eigenvectors. These

boundaries generate a hierarchical segmentation [2], one level of which we display in the final column with per-pixel figure/ground averaged

over regions. Note the drastic improvement in results over [22]. While [22] reflects a strong lower-region bias for figure, our system learns

to use image content and extracts foreground objects. All examples are from our resplit figure/ground test subset of BSDS.



Image F/G: Ground-truth F/G: Maire [22] F/G: Ours

Figure/Ground Transferred onto Ground-truth Segmentation

Maire [22] Ours

Boundary Ownership Correctness

Figure 8. Figure/ground prediction accuracy measured on ground-truth segmentation. We transfer per-pixel figure/ground predic-

tions (columns 2 through 4 of Figure 7) onto the ground-truth segmentation by taking the median value over each region. For boundaries

separating regions with different ground-truth figure/ground layer assignments, we check whether the predicted owner (more figural region)

matches the owner according to the ground-truth. The rightmost two columns mark correct boundary ownership predictions in green and

errors in red. Note how we correctly predict ownership of object lower boundaries. Table 1 gives quantitative benchmarks.

Segmentation: Figure/Ground Prediction Accuracy

Ground-truth R-ACC B-ACC B-ACC-50 B-ACC-25

F/G: Ours 0.62 0.69 0.72 0.73

F/G: Maire [22] 0.56 0.58 0.56 0.56

Segmentation: Figure/Ground Prediction Accuracy

Ours R-ACC B-ACC B-ACC-50 B-ACC-25

F/G: Ours 0.66 0.70 0.69 0.67

F/G: Maire [22] 0.59 0.62 0.61 0.58

Table 1. Figure/ground benchmark results. After transferring

figure/ground predictions onto either ground-truth (upper table and

Figure 8) or our own (lower table) segmentations, we quantify ac-

curacy of local relative region and boundary relationships. Our

system dramatically outperforms [22] across all metrics.

tection performance, we develop a simpler alternative.

Given a per-pixel figure/ground ordering assignment,

and a segmentation partitioning an image into regions, we

can easily order the regions according to figure/ground lay-

ering. Simply assign each region a rank order equal to the

median figure/ground order of its member pixels.

This transfer procedure serves as a basis for comparing

different figure/ground orderings. We transfer them both

onto the same segmentation. This yields two orderings of

the same regions, which we compare according to:

• Region accuracy (R-ACC): Over all pairs of neighbor-

ing regions, how often does predicted relative ordering

match ground-truth relative ordering?

• Boundary ownership accuracy (B-ACC): Define the

front region as owning the pixels on the common

boundary of the region pair and measure the average

per-pixel accuracy of predicted boundary ownership.

• B-ACC-50, B-ACC-25: Identical to B-ACC, ex-

cept consider only boundaries which belong to the

foreground-most 50% or 25% of regions according to

ground-truth figure/ground ordering. These metrics

emphasize the importance of correctly organizing fore-

ground objects while ignoring more distant objects.

Table 1 quantitatively compares our figure/ground pre-

dictions and those of [22] against ground-truth fig-

ure/ground on our 50 image test subset of BSDS [25]. We

consider both projection onto ground-truth segmentation

and onto our own system’s segmentation output. For the

latter, as our system produces hierarchical segmentation, we

use the region partition at a fixed level of the hierarchy, cal-

ibrated for optimal boundary F-measure. Figure 8 and the

supplementary material provide visual comparisons.

Across all metrics, our system significantly outper-

forms [22]. We achieve 69% and 70% boundary ownership

accuracy on ground-truth and automatic segmentation, re-

spectively, compared to 58% and 62% for [22].

4.4. Additional Datasets

Figure 9 demonstrates that our BSDS-trained system

captures generally-applicable notions of both segmentation

and figure/ground. On both PASCAL VOC [10] and the

Weizmann Horse database [5], it generates figure/ground

layering that respects scene organization. On the Weizmann

examples, though having only been trained for perceptual

organization, it behaves like an object detector.

5. Conclusion

We demonstrate that Angular Embedding, acting on

CNN predictions about pairwise pixel relationships, pro-

vides a powerful framework for segmentation and fig-

ure/ground organization. Our work is the first to formulate

a robust interface between these two components. Our re-

sults are a dramatic improvement over prior attempts to use

spectral methods for figure/ground organization.
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