# **Direct Intrinsics: Learning Albedo-Shading Decomposition by Convolutional Regression**



## **CNN Architecture**



Our multiscale CNN regression (MSCR) architecture extends prior designs [4]:

### Multiscale for global/local context fusion

- Scale 1 coarse net for global context
- Scale 2 fine net for local information
- Arbitrary size input (fully convolutional)

#### **PReLUs for better convergence**

• Learn negative slopes  $a_i$ 

$$g(x_i) = \begin{cases} x_i, & x_i \ge 0\\ a_i x_i, & x_i < 0 \end{cases}$$

### **Deconvolution for finer output**

- Learnable convolutional upsampling fi
- Apply at the end of network
- C' = C = 3 for upsampling (our baseli
- C' = 64, C = 3 for deconvolution

### **Experimental variants**

- Hypercolumns in scale 1 for cue fusion
- Training: alternative loss functions
- Training: data augmentation and synth

Takuya Narihira UC Berkeley / ICSI / Sony Corp.

### Michael Maire TTI Chicago

### **Training Loss Functions**

**Scale Invariant Loss** [4]

$$\mathcal{L}_{\mathrm{SI}}(Y^*, Y) = \frac{1}{n} \sum_{i,j,c} y_{i,j,c}^2 - \lambda \frac{1}{n^2} \left( \sum_{i,j,c} y_{i,j,c} \right)^2$$

- $Y^*$ : ground-truth in log space, Y: prediction map,  $y = Y^* Y$
- Imposed on both albedo and shading outputs

**Gradient Loss** 

$$\mathcal{L}_{\text{grad}}(Y^*, Y) = \frac{1}{n} \sum_{i,j,c} \left[ \nabla_i y_{i,j,c}^2 + \nabla_j y_{i,j,c}^2 \right]$$

- $\nabla_i$ ,  $\nabla_j$ : derivative operators in the *i* and *j*-dimensions
- Optionally applied to albedo to account for piece-wise constancy

### **Our Model on RGB Outperforms the State-of-the-Art on RGB+Depth**



## **Best Performance on Sintel**

|        | Sintel Training & Testing: Image Split | MSE                  | LMSE             | DSSIM                | MIT Training & Testing: Our Split                | MSE                                | LMSE                                                   |
|--------|----------------------------------------|----------------------|------------------|----------------------|--------------------------------------------------|------------------------------------|--------------------------------------------------------|
|        |                                        | Albedo   Shading     | Albedo   Shading | Albedo Shading       |                                                  | Albedo Shading Avg                 | Albedo   Shading   Total [5]                           |
|        | Baseline: Shading Constant             | 0.0531 0.0488        | 0.0326 0.0284    | 0.2140 0.2060        | *Ours: MSCR+dropout+deconv+DA+GenMIT             | 0.0105 <b>0.0083</b> 0.0094        | 0.0296 <b>0.0163</b> 0.0234                            |
|        | Baseline: Albedo Constant              | 0.0369 0.0378        | 0.0240 0.0303    | 0.2280 0.1870        | *Ours without deconv                             | 0.0123 0.0135 0.0129               | 0.0304 0.0164 0.0249                                   |
|        | Retinex [5]                            | 0.0606 0.0727        | 0.0366 0.0419    | 0.2270 0.2400        | Ours without DA                                  | 0.0107 0.0086 0.0097               | 0.0300 0.0167 0.0239                                   |
|        | Lee <i>et al.</i> [6]                  | 0.0463 0.0507        | 0.0224 0.0192    | 0.1990 0.1770        | Ours without GenMIT                              | 0.0106 0.0097 0.0102               | 0.0302 0.0184 0.0252                                   |
|        | Barron <i>et al.</i> [1]               | 0.0420 0.0436        | 0.0298 0.0264    | 0.2100 0.2060        | Ours + Sintel                                    | 0.0110 0.0103 0.0107               | 0.0293 0.0182 0.0243                                   |
|        | Chen and Koltun [3]                    | 0.0307 0.0277        | 0.0185 0.0190    | <b>0.1960</b> 0.1650 | *Ours + ResynthSintel                            | <b>0.0096</b> 0.0085 <b>0.0091</b> | <b>0.0267</b> 0.0172 <b>0.0224</b>                     |
| ilters | MSCR+dropout+GL                        | 0.0100 0.0092        | 0.0083 $0.0085$  | 0.2014 <b>0.1505</b> |                                                  | " ' '                              |                                                        |
| ine)   | Sintel Training & Testing: Scene Split | MSE                  | LMSE             | DSSIM                | MIT Training & Testing: Barron et al.'s Split    | MSE<br>Albedo Shading Avg          | LMSE<br>Albedo Shading Total [5]                       |
|        |                                        | Albedo Shading       | Albedo Shading   | g Albedo Shading     | Naive Baseline (from [1], uniform shading)       | 0.0577   0.0455   0.0516           | - $ 0.0354$                                            |
|        | MSCR (scale 2 only)                    | 0.0255 0.0269        | 0.0171 0.0186    | 0.2293 0.1882        | Barron <i>et al.</i> [1]                         | <b>0.0064</b> 0.0098 <b>0.0081</b> | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |
|        | MSCR                                   | 0.0238 0.0250        | 0.0155 0.0172    | 0.2226 0.1816        | Ours + ResynthSintel                             | 0.0096   0.0080   0.0088           | 0.0275 $0.0152$ $0.0218$                               |
|        | MSCR+dropout                           | 0.0228 0.0240        | 0.0147 0.0168    | 0.2192 0.1746        |                                                  |                                    |                                                        |
| n      | MSCR+dropout+HC                        | 0.0231 0.0247        | 0.0147 0.0167    | 0.2187 0.1750        | Kev: $GL = gradient loss HC = hypercol$          | umns DA = data augment             | tation (scaling, rotation)                             |
|        | MSCR+dropout+GL                        | 0.0219 0.0242        | 0.0143 0.0166    | 0.2163 0.1737        | GenMIT = add MIT w/generated shading to training |                                    | ining                                                  |
|        | MSCR+dropout+deconv+DA                 | 0.0209 0.0221        | 0.0135 0.0144    | 0.2081 0.1608        | Sintel = add                                     | Sintel data to training            | $\sim$                                                 |
| nesis  | *MSCR+dropout+deconv+DA+GenMIT         | <b>0.0201</b> 0.0224 | 0.0131    0.0148 | 0.2073  0.1594       | ResynthSintel = add res                          | ynthesized Sintel data to tra      | aining                                                 |

Stella X. Yu UC Berkeley / ICSI

### **Training Data Augmentation**

### **Random augmentation**

Cropping, horizontal mirroring (baseline), scaling and rotation (DA) Dropout with p = 0.5 for all conv layers except conv1-conv5

### **Generated MIT shading (GenMIT)**

• Each object has only one ground-truth shading example (the original light source image) in MIT dataset • Generate more shading examples from ground-truth albedo and 10 additional diffuse images by  $S = \alpha I/A$ 

### **Resynthesize Sintel for adaptation to MIT training (ResynthSintel)**

• Rendered Sintel ground-truth does not satisfy  $I = \alpha A \cdot S$ • Generate resynthesized Sintel images by  $I' = A \cdot S$ 

## **Competitive Performance on MIT**



### **Deconvolution and Resynthesis Improve Results on MIT**



- tion. ECCV, 2012.



### **Consistent Result Quality across Sintel Images**

Ground-truth Albedo

Our Albedo

Ground-truth Shading

Our Shading

flectance from Shading. PAMI, 2015.

[2] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A Naturalistic Open Source Movie for Optical Flow Evalua-

[3] Q. Chen and V. Koltun. A Simple Model for Intrinsic Image Decomposition with Depth Cues. ICCV, 2013.

mals and Semantic Labels with a Common Multi-scale Convolutional Architecture. CVPR, 2015.

[1] J. T. Barron and J. Malik. Shape, Illumination, and Re- [5] R. Grosse, M. K. Johnson, E. H. Adelson, and W. T. Freeman. Ground Truth Dataset and Baseline Evaluations for Intrinsic Image Algorithms. ICCV, 2009.

- [6] K. J. Lee, Q. Zhao, X. Tong, M. Gong, S. Izadi, S. U. Lee, P. Tan, and S. Lin. Estimation of Intrinsic Image Sequences from Image+Depth Video. ECCV, 2012.
- [4] D. Eigen and R. Fergus. Predicting Depth, Surface Nor- [7] T. Narihira, M. Maire, and S. X. Yu. Learning Lightness from Human Judgement on Relative Reflectance. CVPR, 2015.