
Reconstructive Sparse Code Transfer for

Contour Detection and Semantic Labeling

Michael Maire1,2, Stella X. Yu3, and Pietro Perona2

1TTI Chicago 2California Institute of Technology
3University of California at Berkeley / ICSI

mmaire@ttic.edu, stellayu@berkeley.edu, perona@caltech.edu

Abstract. We frame the task of predicting a semantic labeling as a
sparse reconstruction procedure that applies a target-specific learned
transfer function to a generic deep sparse code representation of an im-
age. This strategy partitions training into two distinct stages. First, in
an unsupervised manner, we learn a set of dictionaries optimized for
sparse coding of image patches. These generic dictionaries minimize er-
ror with respect to representing image appearance and are independent
of any particular target task. We train a multilayer representation via
recursive sparse dictionary learning on pooled codes output by earlier
layers. Second, we encode all training images with the generic dictionar-
ies and learn a transfer function that optimizes reconstruction of patches
extracted from annotated ground-truth given the sparse codes of their
corresponding image patches. At test time, we encode a novel image using
the generic dictionaries and then reconstruct using the transfer function.
The output reconstruction is a semantic labeling of the test image.

Applying this strategy to the task of contour detection, we demon-
strate performance competitive with state-of-the-art systems. Unlike al-
most all prior work, our approach obviates the need for any form of
hand-designed features or filters. Our model is entirely learned from im-
age and ground-truth patches, with only patch sizes, dictionary sizes
and sparsity levels, and depth of the network as chosen parameters. To
illustrate the general applicability of our approach, we also show initial
results on the task of semantic part labeling of human faces.

The effectiveness of our data-driven approach opens new avenues for
research on deep sparse representations. Our classifiers utilize this rep-
resentation in a novel manner. Rather than acting on nodes in the deep-
est layer, they attach to nodes along a slice through multiple layers of
the network in order to make predictions about local patches. Our flex-
ible combination of a generatively learned sparse representation with
discriminatively trained transfer classifiers extends the notion of sparse
reconstruction to encompass arbitrary semantic labeling tasks.

1 Introduction

A multitude of recent work establishes the power of learning hierarchical rep-
resentations for visual recognition tasks. Noteworthy examples include deep au-
toencoders [1], deep convolutional networks [2, 3], deconvolutional networks [4],

2 Maire, Yu, Perona

hierarchical sparse coding [5], and multipath sparse coding [6]. Though model-
ing choices and learning techniques vary, these architectures share the overall
strategy of concatenating coding (or convolution) operations followed by pool-
ing operations in a repeating series of layers. Typically, the representation at the
topmost layer (or pooled codes from multiple layers [6]) serves as an input fea-
ture vector for an auxiliary classifier, such as a support vector machine (SVM),
tasked with assigning a category label to the image.

Our work is motivated by exploration of the information content of the rep-
resentation constructed by the rest of the network. While the topmost or pooled
features robustly encode object category, what semantics can be extracted from
the spatially distributed activations in the earlier network layers? Previous work
attacks this question through development of tools for visualizing and probing
network behavior [7]. We provide a direct result: a multilayer slice above a par-
ticular spatial location contains sufficient information for semantic labeling of
a local patch. Combining predicted labels across overlapping patches yields a
semantic segmentation of the entire image.

In the case of contour detection (regarded as a binary labeling problem), we
show that a single layer sparse representation (albeit over multiple image scales
and patch sizes) suffices to recover most edges, while a second layer adds the
ability to differentiate (and suppress) texture edges. This suggests that contour
detection (and its dual problem, image segmentation [8]) emerge implicitly as
byproducts of deep representations.

Moreover, our reconstruction algorithm is not specific to contours. It is a
recipe for transforming a generic sparse representation into a task-specific se-
mantic labeling. We are able to reuse the same multilayer network structure for
contours in order to train a system for semantic segmentation of human faces.

We make these claims in the specific context of the multipath sparse coding
architecture of Bo et al. [6]. We learn sparse codes for different patch resolutions
on image input, and, for deeper layers, on pooled and subsampled sparse repre-
sentations of earlier layers. However, instead of a final step that pools codes into a
single feature vector for the entire image, we use the distributed encoding in the
setting of sparse reconstruction. This encoding associates a high-dimensional
sparse feature vector with each pixel. For the traditional image denoising re-
construction task, convolving these vectors with the patch dictionary from the
encoding stage and averaging overlapping areas yields a denoised version of the
original image [9].

Our strategy is to instead swap in an entirely different dictionary for use
in reconstruction. Here we generalize the notion of “dictionary” to include any
function which takes a sparse feature vector as input and outputs predicted labels
for a patch. Throughout the paper, these transfer dictionaries take the form of a
set of logistic regression functions: one function for predicting the label of each
pixel in the output patch. For a simplified toy example, Figure 1 illustrates the
reconstruction obtained with such a dictionary learned for the contour detection
task. Figure 2 diagrams the much larger multipath sparse coding network that
our actual system uses to generate high-dimensional sparse representations. The

Reconstructive Sparse Code Transfer 3

Im
a
g
e

⇒

Patch Dictionary

Batch OMP

⇒

c
o
e
ffi
c
ie
n
ts

→

pixels →

S
p
arse

C
o
d
e
s

S
p
ar
se

C
o
d
e
s

c
o
e
ffi
c
ie
n
ts

→

pixels →

⇒

Patch Dictionary

Reconstruction

⇒

Reconstructed Image
(locally zero-mean)

⇐

R
e
ct
ifi
e
d
S
p
ar
se

C
o
d
e
s

c
o
e
ffi
c
ie
n
ts

→

pixels →

⇒

Transfer Dictionary

Reconstruction

⇒

Contour Detection

Fig. 1. Reconstructive sparse code transfer. Top: Applying batch orthogonal
matching pursuit (BOMP) [10, 11] against a learned appearance dictionary determines
a sparse code for each patch in the image. We subtract means of patch RGB channels
prior to encoding. Bottom: Convolving the sparse code representation with the same
dictionary reconstructs a locally zero-mean version of the input image. Alternatively,
rectifying the representation and applying a transfer function (learned for contour
detection) reconstructs an edge map. For illustrative purposes, we show a small single-
layer dictionary (64 11x11 patches) and simple transfer functions (logistic classifiers)
whose coefficients are rendered as a corresponding dictionary. Our deeper represen-
tations (Figure 2) are much higher-dimensional and yield better performing, but not
easily visualized, transfer functions.

4 Maire, Yu, Perona

Multiple Scales

×

Layer 1 Dictionaries

5x5 patches, 64 atoms

11x11 patches, 64 atoms

5x5 patches, 512 atoms

11x11 patches, 512 atoms

21x21 patches, 512 atoms

31x31 patches, 512 atoms

pooling

−→
−→

=⇒

Layer 2 Dictionaries

5x5 patches, 512 atoms

5x5 patches, 512 atoms

⇐

rectify, upsample, concatenate

sparse activation maps⇒

Contour Reconstruction

⇐=

b

Sparse Representation

3
6
0
0
0

d
im

e
n
s
io

n
s

Fig. 2. Multipath sparse coding and reconstruction network. We resize an
image to 6 different scales (3 shown) and encode each using dictionaries learned for
different patch sizes and atom counts. Encoding sparsity is 2 and 4 nonzero coefficients
for 64 and 512 atom dictionaries, respectively. The output representation of the smaller
dictionaries is pooled, subsampled, and fed to a second sparse coding layer. We then
rectify all sparse activation maps, upsample them to the original grid size, and con-
catenate to form a 36000-dimensional sparse representation for each pixel on the image
grid. A set of logistic classifiers then transform the sparse vector associated with each
pixel (red vertical slice) into a predicted labeling of the surrounding patch (red box).

structural similarity to the multipath network of Bo et al. [6] is by design. They
tap part of such a network for object recognition; we tap a different part of the
network for semantic segmentation. This suggests that it may be possible to use
an underlying shared representation for both tasks.

In addition to being an implicit aspect of deep representations used for ob-
ject recognition, our approach to contour detection is entirely free of reliance on
hand-crafted features. As Section 2 reviews, this characteristic is unique amongst
competing contour detection algorithms. Sections 3, 4, and 5 describe the tech-
nical details behind our two-stage approach of sparse coding and reconstructive
transfer. Section 6 visualizes and benchmarks results for our primary application
of contour detection on the Berkeley segmentation dataset (BSDS) [12]. We also
show results for a secondary application of semantic part labeling on the Labeled
Faces in the Wild (LFW) dataset [13, 14]. Section 7 concludes.

2 Related Work

Contour detection has long been a major research focus in computer vision. Ar-
beláez et al. [8] catalogue a vast set of historical and modern algorithms. Three

Reconstructive Sparse Code Transfer 5

different approaches [8, 15, 16] appear competitive for state-of-the-art accuracy.
Arbeláez et al. [8] derive pairwise pixel affinities from local color and texture
gradients [17] and apply spectral clustering [18] followed by morphological oper-
ations to obtain a global boundary map.

Ren and Bo [15] adopt the same pipeline, but use gradients of sparse codes
instead of the color and texture gradients developed by Martin et al. [17]. Note
that this is completely different from the manner in which we propose to use
sparse coding for contour detection. In [15], sparse codes from a dictionary of
small 5 × 5 patches serve as replacement for the textons [19] used in previous
work [17, 8]. Borrowing the hand-designed filtering scheme of [17], half-discs at
multiple orientations act as regions over which codes are pooled into feature
vectors and then classified using an SVM. In contrast, we use a range of patch
resolutions, from 5 × 5 to 31 × 31, without hand-designed gradient operations,
in a reconstructive setting through application of a learned transfer dictionary.
Our sparse codes assume a role different than that of serving as glorified textons.

Dollár and Zitnick [16] learn a random decision forest on feature channels
consisting of image color, gradient magnitude at multiple orientations, and pair-
wise patch differences. They cluster ground-truth edge patches by similarity and
train the random forest to predict structured output. The emphasis on describing
local edge structure in both [16] and previous work [20, 21] matches our intuition.
However, sparse coding offers a more flexible methodology for achieving this goal.
Unlike [16], we learn directly from image data (not predefined features), in an
unsupervised manner, a generic (not contour-specific) representation, which can
then be ported to many tasks via a second stage of supervised transfer learning.

Mairal et al. [22] use sparse models as the foundation for developing an
edge detector. However, they focus on discriminative dictionary training and
per-pixel labeling using a linear classifier on feature vectors derived from error
residuals during sparse coding of patches. This scheme does not benefit from
the spatial averaging of overlapping predictions that occurs in structured output
paradigms such as [16] and our proposed algorithm. It also does not incorporate
deeper layers of coding, an aspect we find to be crucial for capturing texture
characteristics in the sparse representation.

Yang et al. [23] study the problem of learning dictionaries for coupled feature
spaces with image super-resolution as an application. We share their motivation
of utilizing sparse coding in a transfer learning context. As the following sec-
tions detail, we differ in our choice of a modular training procedure split into
distinct unsupervised (generic) and supervised (transfer) phases. We are unique
in targeting contour detection and face part labeling as applications.

3 Sparse Representation

Given image I consisting of c channels (c = 3 for an RGB color image) defined
over a 2-dimension grid, our sparse coding problem is to represent each m×m×c
patch x ∈ I as a sparse linear combination z of elements from a dictionary
D = [d0, d1, . . . , dL−1] ∈ ℜ(m·m·c)×L. From a collection of patchesX = [x0, x1, ...]

6 Maire, Yu, Perona

randomly sampled from a set of training images, we learn the corresponding
sparse representations Z = [z0, z1, ...] as well as the dictionary D using the MI-
KSVD algorithm proposed by Bo et al. [6]. MI-KSVD finds an approximate
solution to the following optimization problem:

argmin
D, Z


||X −DZ||2F + λ

L−1∑

i=0

L−1∑

j=0,j 6=i

|dTi dj |




s.t. ∀i, ||di||2 = 1 and ∀n, ||zn||0 ≤ K

(1)

where || · ||F denotes Frobenius norm and K is the desired sparsity level. MI-
KSVD adapts KSVD [24] by balancing reconstruction error with mutual in-
coherence of the dictionary. This unsupervised training stage is blind to any
task-specific uses of the sparse representation.

Once the dictionary is fixed, the desired encoding z ∈ ℜL of a novel patch
x ∈ ℜm·m·c is:

argmin
z

||x−Dz||2 s.t. ||z||0 ≤ K (2)

Obtaining the exact optimal z is NP-hard, but the orthogonal matching pursuit
(OMP) algorithm [10] is a greedy iterative routine that works well in practice.
Over each of K rounds, it selects the dictionary atom (codeword) best correlated
with the residual after orthogonal projection onto the span of previously selected
codewords. Batch orthogonal matching pursuit [11] precomputes correlations
between codewords to significantly speed the process of coding many signals
against the same dictionary. We extract the m×m patch surrounding each pixel
in an image and encode all patches using batch orthogonal matching pursuit.

4 Dictionary Transfer

Coding an image I as described in the previous section produces a sparse matrix
Z ∈ ℜL×N , where N is the number of pixels in the image and each column of Z
has at most K nonzeros. Reshaping each of the L rows of Z into a 2-dimensional
grid matching the image size, convolving with the corresponding codeword from
D, and summing the results approximately reconstructs the original image. Fig-
ure 1 (middle) shows an example with the caveat that we drop patch means from
the sparse representation and hence also from the reconstruction. Equivalently,
one can view D as defining a function that maps a sparse vector z ∈ ℜL associ-
ated with a pixel to a predicted patch P ∈ ℜm×m×c which is superimposed on
the surrounding image grid and added to overlapping predictions.

We want to replace D with a function F (z) such that applying this pro-
cedure with F (·) produces overlapping patch predictions that, when averaged,

reconstruct signal Ĝ which closely approximates some desired ground-truth la-
beling G. G lives on the same 2-dimensional grid as I, but may differ in number
of channels. For contour detection, G is a single-channel binary image indicat-
ing presence or absence of an edge at each pixel. For semantic labeling, G may

Reconstructive Sparse Code Transfer 7

have as many channels as categories with each channel serving as an indicator
function for category presence at every location.

We regard choice of F (·) as a transfer learning problem given examples of
sparse representations and corresponding ground-truth, {(Z0, G0), (Z1, G1), . . .}.
To further simplify the problem, we consider only patch-wise correspondence.
Viewing Z and G as living on the image grid, we sample a collection of patches
{g0, g1, . . .} from {G0, G1, . . .} along with the length L sparse coefficient vectors
located at the center of each sampled patch, {z0, z1, . . .}. We rectify each of these
sparse vectors and append a constant term:

ẑi =
[

max(zTi , 0), max(−zTi , 0), 1
]T

(3)

Our patch-level transfer learning problem is now to find F (·) such that:

F (ẑi) ≈ gi ∀i (4)

where ẑi ∈ ℜ2L+1 is a vector of sparse coefficients and gi ∈ ℜm×m×h is a target
ground-truth patch. Here, h denotes the number of channels in the ground-truth
(and its predicted reconstruction).

While one could still choose any method for modeling F (·), we make an
extremely simple and efficient choice, with the expectation that the sparse rep-
resentation will be rich enough that simple transfer functions will work well.
Specifically, we split F (·) into a set [f0, f1, ..., f(m2h−1)] of independently trained
predictors f(·), one for each of the m2h elements of the output patch. Our trans-
fer learning problem is now:

fj(ẑi) ≈ gi[j] ∀i, j (5)

As all experiments in this paper deal with ground-truth in the form of binary in-
dicator vectors, we set each fj(·) to be a logistic classifier and train its coefficients
using L2-regularized logistic regression.

Predicting m × m patches means that each element of the output recon-
struction is an average of outputs from m2 different fj(·) classifiers. Moreover,
one would expect (and we observe in practice) the accuracy of the classifiers
to be spatially varying. Predicted labels of pixels more distant from the patch
center are less reliable than those nearby. To correct for this, we weight pre-
dicted patches with a Gaussian kernel when spatially averaging them during
reconstruction.

Additionally, we would like the computation time for prediction to grow
more slowly than O(m2) as patch size increases. Because predictions originating
from similar spatial locations are likely to be correlated and a Gaussian kernel
gives distant neighbors small weight, we construct an adaptive kernel W, which
approximates the Gaussian, taking fewer samples with increasing distance, but
upweighting them to compensate for decreased sample density. Specifically:

W(x, y;σ) =

{
G(x, y;σ)/ρ(x, y) if (x, y) ∈ S
0 otherwise

(6)

8 Maire, Yu, Perona

#nonzeros = 441 389 289 205 157

Fig. 3. Subsampled patch averaging kernels. Instead of uniformly averaging over-
lapping patch predictions during reconstruction, we weight them with a Gaussian kernel
to model their spatially varying reliability. As a classifier evaluation can be skipped if
its prediction will receive zero weight within the averaging procedure, we adaptively
sparsify the kernel to achieve a runtime speedup. Using the aggressively subsampled
(rightmost) kernel is 3x faster than using the non-subsampled (leftmost) version, and
offers equivalent accuracy. We also save the expense of training unused classifiers.

where G is a 2D Gaussian, S is a set of sample points, and ρ(x, y) measures the
local density of sample points. Figure 3 provides an illustration of W for fixed σ
and sampling patterns which repeatedly halve density at various radii.

We report all experimental results using the adaptively sampled approximate
Gaussian kernel during reconstruction. We found it to perform equivalently to
the full Gaussian kernel and better than uniform patch weighting. The adaptive
weight kernel not only reduces runtime, but also reduces training time as we
neither run nor train the fj(·) classifiers that the kernel assigns zero weight.

5 Multipath Network

Sections 3 and 4 describe our system for reconstructive sparse code transfer in
the context of a single generatively learned patch dictionary D and the resulting
sparse representation. In practice, we must offer the system a richer view of
the input than can be obtained from coding against a single dictionary. To
accomplish this, we borrow the multipath sparse coding framework of Bo et

al. [6] which combines two strategies for building richer representations.
First, the image is rescaled and all scales are coded against multiple dictio-

naries for patches of varying size. Second, the output sparse representation is
pooled, subsampled, and then treated as a new input signal for another layer
of sparse coding. Figure 2 describes the network architecture we have chosen in
order to implement this strategy. We use rectification followed by hybrid average-
max pooling (the average of nonzero coefficients) between layers 1 and 2. For
5× 5 patches, we pool over 3× 3 windows and subsample by a factor of 2, while
for 11× 11 patches, we pool over 5× 5 windows and subsample by a factor of 4.

We concatenate all representations generated by the 512-atom dictionaries,
rectify, and upsample them so that they live on the original image grid. This
results in a 36000-dimensional sparse vector representation for each image pixel.
Despite the high dimensionality, there are only a few hundred nonzero entries
per pixel, so total computational work is quite reasonable.

Reconstructive Sparse Code Transfer 9

The dictionary transfer stage described in Section 4 now operates on these
high-dimensional concatenated sparse vectors (L = 36000) instead of the output
of a single dictionary. Training is more expensive, but classification and recon-
struction is still cheap. The cost of evaluating the logistic classifiers scales with
the number of nonzero coefficients in the sparse representations rather than the
dimensionality. As a speedup for training, we drop a different random 50% of
the representation for each of the logistic classifiers.

6 Experiments

We apply multipath reconstructive sparse code transfer to two pixel labeling
tasks: contour detection on the Berkeley segmentation dataset (BSDS) [12], and
semantic labeling of human faces (into skin, hair, and background) on the part
subset [14] of the Labeled Faces in the Wild (LFW) dataset [13]. We use the
network structure in Figure 2 in both sets of experiments, with the only difference
being that we apply a zero-mean transform to patch channels prior to encoding
in the BSDS experiments. This choice was simply made to increase dictionary
efficiency in the case of contour detection, where absolute color is likely less
important. For experiments on the LFW dataset, we directly encode raw patches.

6.1 Contour Detection

Figure 4 shows contour detection results on example images from the test set
of the 500 image version [8] of the BSDS [12]. Figure 5 shows the precision-
recall curve for our contour detector as benchmarked against human-drawn
ground-truth. Performance is comparable to the heavily-engineered state-of-the-
art global Pb (gPb) detector [8].

Note that both gPb and SCG [15] apply a spectral clustering procedure on
top of their detector output in order to generate a cleaner globally consistent
result. In both cases, this extra step provides a performance boost. Table 1
displays a more nuanced comparison of our contour detection performance with
that of SCG before globalization. Our detector performs comparably to (local)
SCG. We expect that inclusion of a sophisticated spectral integration step [25]
will further boost our contour detection performance, but leave the proof to
future work.

It is also worth emphasizing that our system is the only method in Table 1
that relies on neither hand-crafted filters (global Pb, SCG) nor hand-crafted
features (global Pb, Structured Edges). Our system is learned entirely from data
and even relies on a generatively trained representation as a critical component.

Additional analysis of our results yields the interesting observation that the
second layer of our multipath network appears crucial to texture understanding.
Figure 6 shows a comparison of contour detection results when our system is
restricted to use only layer 1 versus results when the system uses the sparse
representation from both layers 1 and 2. Inclusion of the second layer (deep
sparse coding) essentially allows the classification stage to learn an off switch for
texture edges.

10 Maire, Yu, Perona

Fig. 4. Contour detection results on BSDS500. We show images and correspond-
ing contours produced via reconstructive sparse code transfer. Contours are displayed
prior to applying non-maximal suppression and thinning for benchmarking purposes.

Reconstructive Sparse Code Transfer 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

iso−F

Recall

P
re

ci
si

on

Sparse Code Transfer vs Local Methods

[F = 0.80] Human
[F = 0.74] Structured Edges
[F = 0.72] local SCG (color)
[F = 0.71] Sparse Code Transfer Layers 1+2
[F = 0.69] Sparse Code Transfer Layer 1
[F = 0.69] multiscale Pb
[F = 0.60] Canny Edge Detector

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

iso−F

Recall

P
re

ci
si

on

Sparse Code Transfer vs Global Methods

[F = 0.80] Human
[F = 0.74] global SCG (color)
[F = 0.73] global Pb + UCM
[F = 0.71] global Pb
[F = 0.71] Sparse Code Transfer Layers 1+2
[F = 0.69] Sparse Code Transfer Layer 1

Fig. 5. Contour detection performance on BSDS500.Our contour detector (solid
red curve) achieves a maximum F-measure (2·Precision·Recall

Precision+Recall
) of 0.71, similar to other

leading approaches. Table 1 elaborates with more performance metrics. Left: We show
full precision-recall curves for algorithms that, like ours, predict boundary strength
directly from local image patches. Of these algorithms, sparse code transfer is the
only one free of reliance on hand-designed features or filters. Note that addition of the
second layer improves our system’s performance, as seen in the jump from the blue to
red curve. Right: Post-processing steps that perform global reasoning on top of locally
detected contours can further boost performance. Application of spectral clustering to
multiscale Pb and local SCG yields superior results shown as global Pb and global
SCG, respectively. Further transforming global Pb via an Ultrametric Contour Map
(UCM) [26] yields an additional boost. Without any such post-processing, our local
detector offers performance equivalent to that of global Pb.

Performance Metric Hand-Designed Spectral
ODS F OIS F AP Features? Filters? Globalization?

Human 0.80 0.80 − − − −

Structured Edges [16] 0.74 0.76 0.78 yes no no
local SCG (color) [15] 0.72 0.74 0.75 no yes no
Sparse Code Transfer Layers 1+2 0.71 0.72 0.74 no no no
Sparse Code Transfer Layer 1 0.69 0.71 0.72 no no no
local SCG (gray) [15] 0.69 0.71 0.71 no yes no
multiscale Pb [8] 0.69 0.71 0.68 yes yes no
Canny Edge Detector [27] 0.60 0.63 0.58 yes yes no
global SCG (color) [15] 0.74 0.76 0.77 yes yes yes
global Pb + UCM [8] 0.73 0.76 0.73 yes yes yes + UCM
global Pb [8] 0.71 0.74 0.65 yes yes yes

Table 1. Contour benchmarks on BSDS500. Performance of our sparse code
transfer technique is competitive with the current best performing contour detec-
tion systems [8, 15, 16]. Shown are the detector F-measures when choosing an optimal
threshold for the entire dataset (ODS) or per image (OIS), as well as the average
precision (AP). The upper block of the table reports scores prior to application of
spectral globalization, while the lower block reports improved results of some systems
afterwards. Note that our system is the only approach in which both the feature rep-
resentation and classifier are entirely learned.

12 Maire, Yu, Perona

Layer 1 Layers 1+2 Layer 1 Layers 1+2

Fig. 6. Texture understanding and network depth. From left to right, we display
an image, the contours detected using only the sparse representation from the layer 1
dictionaries in Figure 2, and the contours detected using the representation from both
layers 1 and 2. Inclusion of the second layer is crucial to enabling the system to suppress
undesirable fine-scale texture edges.

6.2 Semantic Labeling of Faces

Figure 7 shows example results for semantic segmentation of skin, hair, and
background classes on the LFW parts dataset using reconstructive sparse code
transfer. All results are for our two-layer multipath network. As the default split
of the LFW parts dataset allowed images of the same individual to appear in
both training and test sets, we randomly re-split the dataset with the constraint
that images of a particular individual were either all in the training set or all in
the test set, with no overlap. All examples in Figure 7 are from our test set after
this more stringent split.

Note that while faces are centered in the LFW part dataset images, we di-
rectly apply our algorithm and make no attempt to take advantage of this ad-
ditional information. Hence, for several examples in Figure 7 our learned skin
and hair detectors fire on both primary and secondary subjects appearing in the
photograph.

7 Conclusion

We demonstrate that sparse coding, combined with a reconstructive transfer
learning framework, produces results competitive with the state-of-the-art for
contour detection. Varying the target of the transfer learning stage allows one
to port a common sparse representation to multiple end tasks. We highlight
semantic labeling of faces as an additional example. Our approach is entirely
data-driven and relies on no hand-crafted features. Sparse representations similar
to the one we consider also arise naturally in the context of deep networks for
image recognition. We conjecture that multipath sparse networks [6] can produce

Reconstructive Sparse Code Transfer 13

Fig. 7. Part labeling results on LFW. Left: Image.Middle: Ground-truth. Semantic
classes are skin (green), hair (red), and background (blue). Right: Semantic labeling
predicted via reconstructive sparse code transfer.

14 Maire, Yu, Perona

shared representations useful for many vision tasks and view this as a promising
direction for future research.

Acknowledgments. ARO/JPL-NASA Stennis NAS7.03001 supported Michael
Maire’s work.

References

1. Le, Q.V., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G.S., Dean,
J., Ng, A.Y.: Building high-level features using large scale unsupervised learning.
ICML (2012)

2. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications
in vision. ISCAS (2010)

3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep
convolutional neural networks. NIPS (2012)

4. Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid
and high level feature learning. ICCV (2011)

5. Yu, K., Lin, Y., Lafferty, J.: Learning image representations from the pixel level
via hierarchical sparse coding. CVPR (2011)

6. Bo, L., Ren, X., Fox, D.: Multipath sparse coding using hierarchical matching
pursuit. CVPR (2013)

7. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
ECCV (2014)

8. Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. PAMI (2011)

9. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations
over learned dictionaries. IEEE Transactions on Image Processing (2006)

10. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: Re-
cursive function approximation with applications to wavelet decomposition. Asilo-
mar Conference on Signals, Systems and Computers (1993)

11. Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient implementation of the K-SVD
algorithm using batch orthogonal matching pursuit. (2008)

12. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. ICCV (2001)

13. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild:
A database for studying face recognition in unconstrained environments. (2007)

14. Kae, A., Sohn, K., Lee, H., Learned-Miller, E.: Augmenting CRFs with Boltzmann
machine shape priors for image labeling. CVPR (2013)

15. Ren, X., Bo, L.: Discriminatively trained sparse code gradients for contour detec-
tion. NIPS (2012)

16. Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. ICCV (2013)
17. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries

using local brightness, color and texture cues. PAMI (2004)
18. Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI (2000)
19. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image

segmentation. IJCV (2001)
20. Ren, X., Fowlkes, C., Malik, J.: Figure/ground assignment in natural images.

ECCV (2006)

Reconstructive Sparse Code Transfer 15

21. Lim, J., Zitnick, C.L., Dollár, P.: Sketch tokens: A learned mid-level representation
for contour and object detection. CVPR (2013)

22. Mairal, J., Leordeanu, M., Bach, F., Hebert, M., Ponce, J.: Discriminative sparse
image models for class-specific edge detection and image interpretation. ECCV
(2008)

23. Yang, J., Wang, Z., Lin, Z., Shu, X., Huang, T.: Bilevel sparse coding for coupled
feature spaces. CVPR (2012)

24. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing over-
complete dictionaries for sparse representation. IEEE Transactions on Signal Pro-
cessing (2006)

25. Maire, M., Yu, S.X., Perona, P.: Progressive multigrid eigensolvers for multiscale
spectral segmentation. ICCV (2013)

26. Arbeláez, P.: Boundary extraction in natural images using ultrametric contour
maps. POCV (2006)

27. Canny, J.: A computational approach to edge detection. PAMI (1986)

