Goal: Efficient multiscale spectral clustering **Solution:** Multigrid eigensolver on multiscale graph

- Pyramid with cross-scale constraints
- Scale-dependent cues active at each pyramid level
- Multigrid:
- Process coarse-to-fine sub-pyramids
- Many early iterations on small sub-pyramids
- Fewer later iterations on full pyramid
- Work with intermediate basis instead of eigenvectors
- Parallelizable for *arbitrary* graph structure (unlike [2])

Overview

Technical Approach:

- Constrained spectral clustering [10]
- Constraint-based coarse-to-fine interpolation
- Randomized methods for matrix approximation [5]
- Self-check for convergence

Image Segmentation Results:

- Order of magnitude speedup
- Automatic inter-scale edge alignment

System Comparison

Multiscale

Progressive Multigrid Multiscale

Transformed Progressive Multigrid Multiscale

Progressive Multigrid Eigensolvers for Multiscale Spectral Segmentation

Michael Maire¹ and Stella X. Yu²

¹California Institute of Technology - Pasadena, CA ²University of California at Berkeley / ICSI - Berkeley, CA

Multiscale Constrained Angular Embedding

Let (C, Θ, U) define a constrained Angular Embedding (AE) problem by specifying relationships between n graph nodes:

- Θ : $n \times n$ pairwise relative ordering matrix
- C: $n \times n$ pairwise confidence matrix
- U: $n \times u$ matrix of u linear constraints

AE recovers global ordering $\theta(p)$ by embedding: $p \rightarrow z = e^{i\theta(p)}$

 $\varepsilon = \sum_{p} \frac{\sum_{q} C(p,q)}{\sum_{p,q} C(p,q)} \cdot |z(p) - \tilde{z}(p)|^2$ (s.t. $U^*z = 0$) Minimize:

Relax to generalized eigenproblem $QPQz = \lambda z$ where:

$$P = D^{-1}W$$

$$Q = I - D^{-1}U(U^{T}D^{-1}U)^{-1}U^{T}$$

with: $D = \operatorname{diag}(C1)$ and $W = C \bullet \exp(i\Theta)$

Eigensolver using Randomized Matrix Approximation

Fixed Rank Problem:

Given: $n \times n$ sparse matrix M

Find: $n \times l$ dense matrix A, where $l = 2m \ll n$

Such that: range of A approximates range of M

Randomized Subspace Iteration [5]:

Draw $n \times l$ Gaussian matrix Ω

 $Y \leftarrow (MM^*)^q M\Omega$ $A \leftarrow \mathsf{QR}\text{-}\mathsf{ORTHONORMALIZE}(Y)$

Coarse-to-Fine Interpolation:

Find A_1 approximating M_1 via subspace iteration Write A approximating M_0 as: $A = [A_1; A_0]$

Look at constraint: $U^*A = 0$

Rewrite as: $[U_{[n_1]}; U_{[n_0]}]^* [A_1; A_0] = 0$

Least-squares interpolate: $\widetilde{A}_{0} = U_{[n_{0}]} (U_{[n_{0}]}^{*} U_{[n_{0}]})^{-1} (-U_{[n_{1}]}^{*} A_{1})$

Use $\widetilde{A} = [A_1; \widetilde{A}_0]$ as starting guess in subspace iteration for A

Eigensolver:

 $B \leftarrow A^*MA$ $l \times l$ matrix $(V, \Lambda) \leftarrow \operatorname{EIGS}(B, m)$ small eigenproblem $Z \leftarrow AV$ *m leading eigenvectors*

Convergence Check:

Evolve two independent bases \widehat{A} and \widecheck{A} of sizes l and rCheck whether the *l* space contains the *r* vectors: $E \leftarrow \check{A} - \hat{A}\hat{A}^*\check{A}$ Return reconstruction error: $\tau = \max_{j=0,\dots,r-1} ||E_{[0:(n-1), j]}||$

^{\dagger} Avoid explicit computation of M. See paper for details.

• Angular Embedding [9] (generalization of Normalized Cuts)

(from multigrid alone; parallelization may further improve)

Multiscale [4, 8]

Multiscale:

- Upgrade C, Θ, U to arrays C, Θ, U , indexed by level s
- Pairwise relationships restricted to be within-level: n_s is the # of nodes in level s
- $\widetilde{n}_s = \sum n_s$ is the cumulative # of nodes in levels s and coarser

 $\mathbf{C}_s, \boldsymbol{\Theta}_s$ are $n_s \times n_s$ matrices

- Constraints organized into incremental sets: u_s is the # of additional constraints at level s $\widetilde{u}_s = \sum u_s$ is the cumulative # of active constrains at level s
- \mathbf{U}_s is an $\widetilde{n}_s \times u_s$ matrix

 \mathbf{U}_s involves only nodes appearing at levels s and coarser

• Extract problem on sub-pyramid:

 $C_s \leftarrow \operatorname{Diag}(\mathbf{C}_{s_{\max}}, \ldots, \mathbf{C}_s)$ $\Theta_s \leftarrow \operatorname{Diag}(\Theta_{s_{\max}}, \ldots, \Theta_s)$ $U_s \leftarrow [\mathbf{U}_{s_{\max}}; \ldots; \mathbf{U}_s]$ Compute D_s , W_s from C_s , Θ_s Define $M_s = Q_s P_s Q_s$

- Leading eigenvectors of M_0 solve the full multiscale problem
- **Multigrid:** solve M_s to assist solution of M_{s-1}

Diffuse: $A = D^{-\frac{1}{2}}WD^{-\frac{1}{2}}A$ Project: $A = (I - D^{-\frac{1}{2}}U(U^*D^{-1}U)^{-1}U^*D^{-\frac{1}{2}})A$ Interpolate: $A = [A; D_{[n_0]}^{\frac{1}{2}} U_{[n_0]} (U_{[n_0]}^* U_{[n_0]})^{-1} (-U_{[n_1]}^* D_{[n_1]}^{-\frac{1}{2}} A)]$

Image

Multiscale Spectral Pb

- [1] P. Arbeláez, M. Maire, C. Fowlkes, and J. Ma- [4] T. Cour, F. Benezit, and J. Shi. Spectral Seg- [7] M. Maire, S.X. Yu, and P. Perona. Object Dementation with Multiscale Graph Decomposilik. Contour Detection and Hierarchical Image tion. CVPR, 2005. Segmentation. PAMI, 2011.
- [2] B. Catanzaro, B.-Y. Su, N. Sundaram, Y. Lee, M. Murphy, and K. Keutzer. Efficient, High-Quality Image Contour Detection. ICCV, 2009.
- Eigensolver for Transition Matrices in Spectral Methods. NIPS, 2005.

Eigenvector Convergence Comparison

Multiscale Eigenvectors 2 through 7

5 fine iterations: 34 sec 20 fine iterations: 94 sec 225 fine iterations: 760 sec 50 fine iterations: 202 sec Our solver processes coarse-to-fine sub-pyramids, converging far faster (27 sec vs 760 sec) than the baseline solver, which starts work on the finest pyramid.

Our eigenvectors live on an image pyramid and produce consistent coarse-to-fine boundaries across scale-space.

- Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions. SIREV, 2011.
- [3] C. Chennubhotla and A.D. Jepson. Hierarchical [6] D. Kushnir, M. Galun, and A. Brandt. Efficient Data Analysis Tasks. PAMI, 2010.
- tection and Segmentation from Joint Embedding of Parts and Pixels. ICCV, 2011.

Runtime

- [5] N. Halko, P.-G. Martinsson, and J. A. Tropp. [8] S.X. Yu. Segmentation Induced by Scale Invariance. CVPR, 2005.
 - [9] S.X. Yu. Angular Embedding: A Robust Quadratic Criterion. PAMI, 2012.
- Multilevel Eigensolvers with Applications to [10] S.X. Yu and J. Shi. Segmentation Given Partial Grouping Constraints. PAMI, 2004.