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Abstract

The human vision tends to recognize more variants of

a distinctive exemplar. This observation suggests that dis-

criminative power of training exemplars could be utilized

for shaping a desirable global classifier that generalizes

maximally from a few exemplars. We propose to derive clas-

sification uncertainty for each exemplar, using a local clas-

sification task to separate the exemplar from those in other

categories. We then design a global classifier by incorpo-

rating these uncertainties into constraints on the classifier

margins. We show through the dual form that the classifica-

tion criterion can be interpreted as finding closest points be-

tween convex hulls in the feature space augmented by clas-

sification uncertainty. We call this scheme Power SVM (as

in Power Diagram), since each exemplar is no longer a sin-

gular point in the feature space, but a super-point with its

own governing power in the classifier space. We test Power

SVM on digit recognition, indoor-outdoor categorization,

and large-scale scene classification tasks. It shows consis-

tent improvement over SVM and uncertainty weighted SVM,

especially when the number of training exemplars is small.

1. Introduction
We study the problem of discriminating many classes

with limited training data. This is a practical problem par-
ticularly for scene categorization, where the distribution of
objects in semantic categories follows a power law [8] and
infrequent objects have very few labeled data.

Our basic observation is that exemplars have different
discrimination capacities, and a distinctive exemplar allows
our human vision to recognize more of its variants. In com-
puter vision, we can evaluate how easily an exemplar might
be confused with others, and use such exemplar-centric lo-
cal discrimination information to constrain a global classi-
fier: A good classifier should place less confusing exem-
plars farther away from the global decision boundary.

In the max margin classification framework, we develop
a model called Power SVM (Fig.1), where each exemplar is
no longer just a singular point in the data space as in conven-
tional SVM, but a super-point with certain prescribed gov-
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Figure 1. Power SVM utilizes different discriminative powers of
exemplars to train a classifier that generalizes better from a few ex-
emplars, while conventional SVM considers exemplars as homo-
geneous points in the feature space where only their locations mat-
ter. For example, to separate (Library Indoor) scene category from
others, long aisle views of bookshelves (redder outlines) would be
less confusing than front views of bookshelves and should lie far-
ther away from the decision boundary of any desirable classifier.

erning power in the classifier space. This concept of non-
uniform uncertainty among exemplars is similar to that of
Power Diagram, a generalization of Voronoi Diagram where
singular points become balls with distinctive radii [7].

By acknowledging the distinction in discrimination ca-
pacity among exemplars, we in fact enhance the utility of
each exemplar in learning a global classifier that generalizes
better from the few exemplars. The fundamental problem of
learning is not just to associate a specific data example with
its conceptual class, but to transfer that association beyond
apparent resemblance between unseen test data and train-
ing exemplars. Power SVM is a simple yet effective and
universal approach towards this goal.

There have been several lines of efforts on multiclass
learning from limited labelled data. Semi-supervised learn-
ing [31, 11] propagates label information to vast unlabeled
data. It requires less labeling, but the effectiveness relies on
the local density of massive unlabeled data. On the other
hand, active learning [15, 27] selects informative exemplars



and not all the available data are used. Hierarchical ap-
proaches [23, 1, 12] introduce a tree structure to classify
multiple categories efficiently. A binary classification prob-
lem is solved at each decision node, with target categories
grouped into positive and negative sets based on their cate-
gorical confusion. Exemplars in the same category are still
treated in a homogeneous fashion.

Several approaches also introduce priors on model pa-
rameters, context, or human performance data, in order to
increase the generalization capability of a few exemplars
[24, 10, 25]. These priors are often feature-classifier spe-
cific and require knowledge outside the training data.

Our work distinguishes itself in three aspects: 1) We ob-
tain classification uncertainty information based entirely on
labelled data; 2) We differentiate exemplars in the same cat-
egory based on their levels of confusion towards other cat-
egories; 3) We directly evaluate exemplars’ discriminative
power in the same feature space for the final classification.

Our work can be compared with several SVM methods.
While structured SVM also introduces bias among exem-
plars [5], their bias is acquired from rich labeling informa-
tion (e.g. object mask) that we do not require. While SVM
with nearest neighbours approaches learn a discriminative
distance function for each point in the feature space [9, 29],
we evaluate the discrimination capacity of each exemplar
and formulate that into a constraint on the classifier.

Compared to curriculum learning methods [2, 16] which
also utilize the quality of individual exemplars, our method
is not iterative and does not require any initialization: It
evaluates all the exemplar uncertainty at once in order to
learn a global classifier.

Our exemplar-centric view of classification is related
to many non-parametric approaches in scene recognition
[26, 13], scene parsing [20, 19] and object recognition
[30, 22]. All these methods often work well only with a
vast number of exemplars. While we train a local classifier
for each exemplar, we do not compare a test image to all the
exemplars according to their local classifiers [22]. We use
local classifiers’ performance on the training data to shape
a global classifier, achieving a faster and better test perfor-
mance that would otherwise require a lot more training data.

2. Power SVM
Consider training a binary linear classifier that separates

m positive exemplars from n negative exemplars. We order
the exemplars so that the first m belong to the positive class
and the last n belong to the negative class.

Each exemplar is specified by (xi, yi, ui), where xi is
a d-dimensional feature vector, yi 2 {�1,+1} is the bi-
nary class label, and ui is a non-negative uncertainty value
indicating how easily the exemplar with feature xi might
be confused with those from the opposite class. The eas-
ier the confusion, the larger the uncertainty. Intuitively, if

the exemplar takes a feature value between the positive and
negative classes, there is maximal classification uncertainty,
whereas if it takes a typical feature value of the class, then
ui = 0, there is no classification uncertainty.

We propose to learn a global max-margin classifier f that
tells the positive class from the negative class while respect-
ing the classification uncertainty ui of each exemplar. Solv-
ing the dual formulation, we show that Power SVM seeks
the closest points between reduced convex hulls of positive
and negative exemplars in the feature space augmented by
the classification uncertainty.

2.1. Primal: Parallel Planes of Max Separation
We first introduce notations. Let 0 denote matrix transpo-

sition. We have two sets of features and their uncertainties:

positive feature set: Ad⇥m = [x1, . . . , xm],

negative feature set: Bd⇥n = [xm+1, . . . , xm+n],

A’s uncertainty: Um⇥1 = [u1, . . . , um]

0
,

B’s uncertainty: Vn⇥1 = [um+1, . . . , um+n]
0
.

We represent a linear classifier by two parallel bounding
planes parametrized by (w, a, b), where wd⇥1 is the nor-
mal of the planes, and a and b are the offset values for the
positive and negative planes (Fig.2). We would like all the
positive features A to lie on the positive side of the positive
plane a, all the negative features B to lie on the negative side
of the negative plane b, and the two planes to be maximally
separated from each other. Since the distance between two
planes is a�b

kwk , we maximize a � b and minimize kwk si-
multaneously. We introduce slack variables pm⇥1 and qn⇥1

to allow exemplars to cross over to the other sides of their
bounding planes, if A and B are linearly inseparable. Such
cross-overs should be minimized.

We formulate uncertainty ui as the amount of allowance
for f(xi) to reach the bounding plane of its class: The larger
the classification uncertainty, the more tolerance for f(xi)

to be located outside the bounding plane.
Taking the above considerations together with constant

D weighing the importance of cross-overs, we propose the
following Power SVM classifier that maximally separates
two parallel bounding planes:

min

w,a,b,p,q
" =

1
2w

0
w � (a� b) +D(p

0
1m + q

0
1n)

s. t. A

0
w + U � a1m � p

B

0
w � V  b1n + q

p � 0m, q � 0n,

(1)

where a constant with subscript m (e.g. 1m) denotes the
m ⇥ 1 vector of the same constant. Note that Power SVM
becomes the classical SVM when U = 0m, V = 0n, where
the decision boundary defined by two parallel planes of
maximal separation (w, a, b) is equivalent to the one defined
by a single plane with normal w and threshold a+b

2 [3].
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Figure 2. Power SVM (green, with ui) and SVM (magenta, without ui) on separating 2D point clouds (filled squares vs. open circles)
sampled from Gaussian distributions (dashed ellipses). The goal of the primal is to find two parallel bounding planes of max separation
between point clouds, with Power SVM additionally giving points different allowances to reach their bounding planes. The goal of the
dual is to find the closest points between two convex hulls (shaded polygons), which lie in the 2D feature space for SVM and lie in the
3D augmented feature space for Power SVM. For the latter, the path length consists of vertical elevations of the two 3D points (along the
3rd dimension of classification uncertainty) and half the squared distance between the points’ projection onto the horizontal feature plane.
With the two extra uncertainty costs, the SVM optimum (magenta) is no longer optimal for Power SVM.

We call this optimization problem Power SVM, since
each xi is no longer a singular point in the feature space
as in SVM, but a super-point with distinctive constraining
power in the classifier space, just as points in a Voronoi Di-
agram become balls of varying radii in a Power Diagram.

2.2. Dual: Shortest Path between Convex Hulls
We solve Power SVM not in the classifier’s parameter

space,but in the exemplar space with m + n dual variables
(↵,�). The dual formulation leads to a clear geometrical
interpretation of finding the shortest path between reduced
convex hulls of positive and negative exemplars, in the fea-
ture space augmented by the classification uncertainty.

The Power SVM primal has the following Lagrangian,
with non-negative multipliers ↵m⇥1, �n⇥1, ⇠m⇥1, ⌘n⇥1:

max

↵,�,⇠,⌘
min

w,a,b,p,q
L(w, a, b, p, q,↵,�, ⇠, ⌘)

=

1

2

w

0
w � (a� b) +D(p

0
1m + q

0
1n)

� ↵

0
(A

0
w + U � a1m + p)

� �

0
(�B

0
w + V + b1n + q)� ⇠

0
p� ⌘

0
q. (2)

Setting L’s derivatives to 0, we have for the optimum:

Lw = w �A↵+B� = 0 ) w = A↵�B� (3)
La = �1 + ↵

0
1m = 0 ) ↵

0
1m = 1 (4)

Lb = 1� �

0
1n = 0 ) �

0
1n = 1 (5)

Lp = D1m � ↵� ⇠ = 0 ) ⇠ = D1m � ↵ (6)
Lq = D1n � � � ⌘ = 0 ) ⌘ = D1n � � (7)

The last two equations show that ↵  D1m and �  D1n.
Eliminating w, a, b, p, q, ⇠, ⌘, we reach the dual form:

min

↵,�
�L =

1

2

kA↵�B�k2 + (U

0
↵+ V

0
�)

s. t. ↵

0
1m = 1, �

0
1n = 1,

0m  ↵  D1m, 0n  �  D1n.

(8)

↵ and � can be interpreted as combination coefficients, thus
A↵ and B� represent points in the convex hulls of positive
and negative exemplars. D is an upper bound on ↵,�: Any
D > 1 is equivalent to D = 1; when D < 1, we have re-
duced convex hulls; when D <

1
min(m,n) , there is no feasi-

ble solution. The effective range of D is thus [ 1
min(m,n) , 1].

At the lowest extreme D =

1
min(m,n) , the convex hull of

positive exemplars (when m  n) or negative exemplars
(when m > n) is reduced to a single centroid point.

The objective �L can be interpreted as the length of the
path connecting two (d+1)-dimensional points in the d-
dimensional feature space augmented by an additional di-
mension for classification uncertainty. The two points lie
inside the reduced convex hulls of positive and negative ex-

emplars
✓

A

U

�
and


B

V

�◆
respectively. The path between

the two points consists of three segments, two along the un-
certainty dimension with length U

0
↵ + V

0
� and one inside

the original feature space with length 1
2kA↵�B�k2).

Since the classifier w = A↵�B� is a linear combination
of exemplars, Power SVM can be kernelized just like SVM.



3. Exemplar Classification Uncertainty
The classification uncertainty ui indicates how easily the

exemplar with feature xi might be confused with those from
the opposite class. It is different from data uncertainty [4]
that captures measurement noise in xi or data fuzziness [18]
that captures labeling noise in yi. Both measure the data
quality of each exemplar itself, whereas our classification
uncertainty is concerned with the quality of one exemplar
against other exemplars and captures its discrimination ca-
pacity in the classifier’s output space.

The key here is that, we can obtain an informative esti-
mate of how discriminative an exemplar is without actually
knowing the desired classifier in advance. In the human vi-
sual experience, given a few frontal views of persons of in-
terest, we pretty much know before seeing other photos of
variations that those with distinctive looks will be identified
more readily and confidently.

Among many possible alternatives, we propose an ap-
proach based on local classification performance for indi-
vidual exemplars. Without compromise among exemplars,
such local discrimination performance provides a lower
bound on the global classification uncertainty, which can
then be used to shape the desired global classifier.

Given m positive and n negative exemplars, we train m

local SVM classifiers that each maximally separates a pos-
itive exemplar from all the n negative exemplars (Fig.3).
We normalize each classifier so that all the fi responses
are comparable across i’s. For example, if fi is a linear
SVM parametrized by normal wi and threshold ti, we scale
fi = (wi, ti) so that wi has a norm of 1.

The classification uncertainty for positive exemplar xi is

1 

2 

3 

Figure 3. Uncertainty U for positive exemplars. The scatter plot
is a 2D PCA visualization of 784-dimensional positive exemplars
(MNIST digit 1, �), negative exemplars (other digits, +), and local
classifier fi’s on three marked exemplars (connected to their solid-
line decision boundaries). The two curves are the distributions of
fi over the positive (red solid line) and negative (blue dashed line)
exemplars, and their average separation is indicated by the gap
between two ticks on the x-axis. The smaller the separation, the
larger the uncertainty for the exemplar (lighter image outline).

a: classification of MNIST digit 3
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b: classification of MNIST digit 4
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Figure 4. Uncertainty V for negative exemplars. Same convention
as Fig.3, except that the two curves are the distributions of all fi’s
over the positive exemplars (red dashed line) and over the nega-
tive exemplar itself (blue dotted line). An exemplar could assume
different uncertainty values in different classification tasks.

characterized by how well its local classifier fi separates
the m positive exemplars from the n negative exemplars
(Fig.3). Let si be the difference between the average posi-
tive response and the average negative response for fi:

si =

mX

t=1

fi(xt)

m

�
m+nX

t=m+1

fi(xt)

n

, i  m. (9)

A large si means that, while fi is designed just to separate
a single positive exemplar xi from negative exemplars, it in
fact well separates the entire positive class from the negative
class. The exemplar xi is thus rather representative of the
positive class and has a large discrimination capacity.

Likewise, the classification uncertainty for negative ex-
emplar xj is characterized by how well this exemplar can be
separated from the positive class by all the local classifiers.
Let sj be the average difference over all fi’s between each
classifier fi’s response on the positive class and on xj :

sj =
1

m

mX

i=1

 
mX

t=1

fi(xt)

m

� fi(xj)

!
, j > m. (10)

A large sj means that, all fi’s tend to put xj in the negative
class. The exemplar xj is thus rather representative of the
negative class and has a large discrimination capacity.



For either positive exemplar xi or negative exemplar xj ,
its classification uncertainty ui or uj is inversely correlated
with the separation si or sj , and can be defined as:

ui / max

1tm
st � si, i  m; (11)

uj / max

m+1tm+n
st � sj , j > m. (12)

Since ui and uj often have different value distributions, we
normalize them separately so that each has a range of [0,1].

For k-way classification, we learn k one-vs-all global
classifiers. If each class has N exemplars, we first learn Nk

local classifiers, each separating an exemplar from the rest
N(k� 1) exemplars. For each of the k global classifier, we
then derive the classification uncertainty for N positive ex-
emplars and N(k�1) negative exemplars, and apply Power
SVM to obtain the global classifier. Each exemplar thus has
a total of k classification uncertainty measurements, one as
a positive exemplar in its own class, and k � 1 as a nega-
tive exemplars in the rest k � 1 classes. Fig.4 shows that
the same exemplars can assume very different uncertainty
in different one-vs-all classification tasks.

The running time of our Power SVM is dominated by
training Nk (especially nonlinear) local classifiers. How-
ever, it could be done off-line and more efficiently with a
linear approximation method [21]. In addition, solving a
local classifier for a single positive exemplar is much easier
and faster than for a general category of exemplars. We are
investigating simpler uncertainty estimation methods.

4. Experimental Results
We solve Power SVM in its dual form, and implement

it using libsvm library [6]. We conduct a series of experi-
ments investigating how Power SVM performs with its own
parameter choice, with various forms of exemplar classifi-
cation uncertainty input, and in comparison with SVM and
uncertainty-weighted SVM on large-scale object recogni-
tion and scene categorization tasks.

4.1. Power SVM Parameter Choice
Power SVM has one parameter D. In the primal, D

weighs the importance of misclassification over class sep-
aration, whereas in the dual, D controls the extent of the
reduced convex hulls. As D increases within its effective
range of [

1
min(m,n) , 1], Power SVM searches the shortest

path between two increasingly larger convex hulls.
We study the effect of D on the MNIST digit dataset. We

train a linear classifier in the feature space of 784 concate-
nated pixel values with L2 normalization. We use 200 out of
60, 000 training images and evaluate the mean classification
error on the training set as well as 10, 000 test images.

The digit recognition rate improves monotonically and
then drops to a plateau as D increases (Fig.5a). This re-
sult can be understood from a geometrical point of view:

a: classification accuracy b: # support vectors (SVs)

Figure 5. Power SVM parameter D controls the importance of
misclassification (in the primal) and the extent of reduced con-
vex hulls (in the dual). When D is at the lowest limit, the reduced
convex hull of positive exemplars is just its centroid and all the ex-
emplars are support vectors. As D increases, the reduced convex
hulls expand and more feasible solutions are considered, the clas-
sification accuracy increases on the training and test sets. As the
optimum is found more on convex hull vertices and with fewer ex-
emplars, overfitting is likely to occur, and the performance drops.

The optimum is found in an increasingly larger feasible re-
gion, thus the classification performance keeps improving
initially; as the reduced convex hulls expand towards the
fullest, the optimum moves towards convex hull vertices
(training data) and overfitting over fewer exemplars (Fig.5b)
is more likely to reduce the test performance. In the rest of
experiments, we use cross-validation to find the optimal D.

4.2. Various Classification Uncertainty Comparison

Power SVM relies on good estimates of exemplar clas-
sification uncertainty. We compare our uncertainty method
with three other simple approaches: 1) Uniform uncertainty.
Power SVM in this case is reduced to the regular SVM,
where every exemplar assumes 0 uncertainty. 2) Random
uncertainty. This baseline case helps establish the utility of
uncertainty. 3) Local-frequency uncertainty. This case sim-
ply measures the proportion of nearest neighbours in the
same category: If all the neighbours are of the same cate-
gory as the exemplar, its classification uncertainty is 0.

Figure 6. Our exemplar classification uncertainty outperforms lo-
cal frequency uncertainty (percentage of exemplars of a different
category in 10 neighbours), uniform uncertainty (0 for every exem-
plar), and random uncertainty (uniformly distributed over [0,1]).
The benefits are consistent but diminishing with more exemplars.



Our uncertainty outperforms the local frequency uncer-
tainty, which only captures the categorical exemplar density
but does outperform uniform uncertainty assumed by SVM
(Fig.6). The random uncertainty is not only uninformative
but also damaging, since its performance is worse than the
uniform uncertainty of the regular SVM.

With an increasing number of exemplars, the recogni-
tion rate always improves, and the benefits of good classi-
fication uncertainty diminish. By acknowledging the dis-
tinction in the classification uncertainty among exemplars,
Power SVM in fact maximizes the utility of each exemplar
and is particularly effective when the training size is small.

We also compare our uncertainty with human classifi-
cation uncertainty on various features. If an image can be
categorized by human subjects accurately, the classification
uncertainty is inherently low. While we do not know which
feature the human vision uses, the human classification ac-
curacy nevertheless provides a lower bound on the exemplar
classification uncertainty in the feature we investigate. For
a binary classification task, if the human accuracy is a, we
derive exemplar uncertainty as 2(1� a), with a = 0.5 (ran-
dom guessing) mapped to the maximal uncertainty of 1.

We train Power SVM on the 50 indoors vs. 50 outdoors
dataset obtained from [25], and test it on 1,000 images sam-
pled from 14 of the 15 scene categories dataset in [17], with
the store category excluded due to its indoor/outdoor ambi-
guity. We provide indoor/outdoor class labels based on the
semantic meaning of the category name.

Consistent with Fig.6, Table 1 shows that our uncertainty
outperforms all the other data-driven uncertainty. It also
outperforms human classification uncertainty on GIST and
HOG features. There are two contributing factors: 1) Un-
like human uncertainty, our uncertainty is specifically tuned
to the feature used for final classification; 2) As a lower
bound of the classification uncertainty, human uncertainty
saturates at 0 for about 25% of exemplars, whereas our data-
driven uncertainty has a much finer and richer separation
between training data, promoting a larger selection variety
of support vectors for the final classifier.

uncertainty type GIST Sparse SIFT HOG
our method (%) 81.9 83.4 89.0
human (%) 80.2 84.5 87.1
local frequency (%) 81.0 83.3 88.0
uniform (SVM)(%) 77.6 82.9 87.3
random (%) 75.2 81.2 85.2

Table 1. Average test accuracy of Power SVM with five types
of exemplar classification uncertainty (rows) on an indoor-outdoor
scene categorization task on three types of feature-classifier set-
tings (columns): GIST with RBF kernel, sparse SIFT with inter-
section kernel, and HOG with intersection kernel.

Human uncertainty on sparse SIFT delivers better per-
formance. It is likely a more accurate estimate, since the
human performance data is collected in an ultra-rapid (16-
millisecond viewing time) categorization task, i.e. only
sparse and salient features are best processed with the hu-
man visual system. For dense features such as GIST and
HOG, our data-driven uncertainty is more relevant.

In short, it is possible to estimate good exemplar classi-
fication uncertainty from data or an external source such as
human classification accuracy. Using it as a constraint on
the desired global classifier allows Power SVM to deliver
much improved results with limited training data.

4.3. Power SVM vs. SVM and Weighted SVM
SVM is a special case of Power SVM, where all the ex-

emplars have uniformly zero classification uncertainty. We
gain further understanding into Power SVM by comparing
its results with SVM’s on 10-class MNIST digit recognition
in a simple setting which trains linear classifiers on concate-
nated pixel values over a total of 200 exemplars.

Our Power SVM improves accuracy over SVM for all
10 MNIST digits, with the largest gain (+12.4%) for digit 9
and smallest gain (+1.2%) for digit 1 (Fig.7a). We observe

a: accuracy gain b: support vector variation

c: 2D PCA visualization of MNIST digit exemplars

Figure 7. Power SVM with our uncertainty shows consistent im-
provement over SVM on all 10 MNIST digits (a). The number of
exemplars is chosen according to Fig.6. b) We compare the mean
standard deviation of support vectors for positive exemplars be-
tween Power SVM and SVM on top 10 PCA dimensions, and the
former is larger for all 10 digits. c) We visualize the distribution of
exemplars as in Fig.3, with digits 1 (blue squares) and 9 (red dots)
highlighted according to the uncertainty. A few most certain (i.e.
reddest, bluest) and uncertain ones are labeled with their images.



that Power SVM tends to select a wider range of exemplars
as support vectors (Fig.7b), and the larger the uncertainty
variation and exemplar distribution (Fig.7c), the larger the
accuracy gain for Power SVM over SVM.

We compare Power SVM with an SVM variant where
the uncertainty is treated as per exemplar weight in the cost
function (the larger the uncertainty, the smaller the weight):

min

w,t,p,q
" =

1
2w

0
w + C(p

0
(1m � U) + q

0
(1n � V ))

s. t. A

0
w � t � 1m � p, p � 0m,

B

0
w � t  �1n + q, q � 0n.

(13)

This weighted SVM is similar to [18] and [14], developed to
address class label noise and uneven class sizes respectively.

It is not only always better to utilize an informative ex-
emplar classification uncertainty in SVM, but Power SVM
is also more effective than weighted SVM at utilizing the
same uncertainty (Fig.8a). This result can be justified theo-
retically. In the primal, weighted SVM can be viewed as
duplicating higher certainty exemplars with weak impact
on support vectors, whereas Power SVM directly pushes
higher certainty exemplars away from the decision bound-
ary. In the dual, weighted SVM changes the shape of convex
hulls (often slightly) while Power SVM modifies the dis-
tance measure for the shortest path between convex hulls.

Power SVM consistently outperforms weighted SVM
and SVM in two scene classification tasks with kernel SVM

a: MNIST b: 15-scene

c: SUN d: accuracy distribution

Figure 8. Power SVM (green) consistently outperforms weighted
SVM (blue), both better than SVM (at 0% level as a baseline). The
relative accuracy improvement is calculated as gain over the SVM
baseline. a) For the 10,000 MNIST test images, the SVM accu-
racy increases from 5.9% to 0.3%. b,c) For the 1500 15-scene and
19850 SUN test images on both GIST (squares on thick lines) and
HOG (stars on thin lines) features, the SVM accuracy increases
from 1% to 10.3% and from 5.4% to 18.4% respectively. At 1 ex-
emplar per category, the three SVM methods become the same. d)
Power SVM improves over kernel SVM on most SUN categories.

[28] on GIST and HOG features (Fig.8b,c). The largest rela-
tive improvement of Power SVM over SVM (normalized by
the performance of SVM) is 10.3% for the 15-scene dataset
[17] with GIST at 20 exemplars per category, and 18.4%
for the SUN dataset [28] with HOG at 50 exemplar per cat-
egory. The latter improvement is substantial for most cate-
gories, with the largest absolute gain at 22% and loss at 8%
among all the 397 categories (Fig.8d).

Fig.9 shows sample results on categories with the largest
accuracy gain and loss. Indoor scenes with larger intra-
category variations get bigger improvement compared to
outdoor nature scene categories with smaller variation. Pos-
itive exemplars of larger uncertainty often have extreme
lightening and smaller fields of view.

We compare our Power SVM to an entirely exemplar-
based approach [22]: Exemplar-centric classifiers are first
learned and calibrated so that their scores on a test image
can be compared and the winning exemplar’s label is the
global classification result. Its accuracy on the SUN dataset
is only 12.3% compared to our 28.3% on HOG feature us-
ing 50 training exemplars per category. This result suggests
that, while uncertainty derived from local classifiers helps,
integrating local discriminative information into one global
discrimination framework provides greater benefits.

It is theoretically and empirically compelling that Power
SVM, a simple idea on SVM using estimated exemplar clas-
sification uncertainty, can deliver an efficient global classi-
fier that generalizes most effectively from a few exemplars.

Conclusions. We present a classification framework that
computes exemplar classification uncertainty based on its
local discrimination against other categories, and then uses
it as constraints for learning a desirable global classifier. We
propose Power SVM which maximizes the separation be-
tween parallel bounding planes on two classes of exemplars
and can be solved by finding the shortest path between con-
vex hulls in the feature space augmented by the dimension
of classification uncertainty. We demonstrate that Power
SVM outperforms SVMs on multiple categorization tasks,
especially when exemplars have a wider range of local dis-
criminability and when the training data size is small.
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