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Abstract

We present a new framework in which image segmen-

tation, figure/ground organization, and object detection all

appear as the result of solving a single grouping problem.

This framework serves as a perceptual organization stage

that integrates information from low-level image cues with

that of high-level part detectors. Pixels and parts each ap-

pear as nodes in a graph whose edges encode both affinity

and ordering relationships. We derive a generalized eigen-

problem from this graph and read off an interpretation of

the image from the solution eigenvectors. Combining an

off-the-shelf top-down part-based person detector with our

low-level cues and grouping formulation, we demonstrate

improvements to object detection and segmentation.

1. Introduction

Many high-performance object detection algorithms op-

erate top-down and do not exploit grouping or segmentation

processes. The best algorithms [9, 26] in the PASCAL VOC

challenge [8] fall into this category as do top systems for

important applications such as finding people in images [2]

and detecting pedestrians specifically [6, 7, 22]. When ob-

ject segmentation is desired as an output, it is often obtained

in a post-processing step, for example, by aligning the pre-

dictions of a top-down detector to image contours [2].

Proponents of using segmentation as an initial phase for

detection and recognition argue that it offers many advan-

tages, such as a reduction in computational complexity [13]

or context over which to compute features [20, 17]. A com-

mon theme of such work is to first partition the image into a

discrete set of intermediate units, such as superpixels [23],

regions, or contours [25]. These entities can then either

serve as input to object detectors [13, 25], or be reasoned

about in concert with detectors to construct a scene inter-

pretation [14, 12, 27, 16].

A drawback of this approach is that it can be difficult to

recover from errors introduced in the initial set of regions or

contours. Hence, the technique of using multiple segmenta-

tions has emerged as a popular method to ameliorate these

difficulties [20, 11, 15]. However, such a strategy comes at

the cost of increased complexity and still offers no guaran-

tee that the correct partitioning will be available.

This paper explores an alternative to the prevalent trends

of either ignoring segmentation or placing a clear division

between segmentation and detection. We avoid making any

hard decisions on an initial image segmentation, instead in-

tegrating low-level segmentation cues into the object detec-

tion process in a soft manner. In our framework, segmenta-

tion and object detection emerge as two aspects of the same

grouping problem.

Our work is in the spirit of prior efforts at using spectral

graph theory to optimize joint grouping criteria for pixels

and objects [29, 30]. It builds on these ideas, with the fol-

lowing important contributions:

• We use Angular Embedding (AE) [28] in place of Nor-

malized Cuts [24] as the grouping algorithm and take

advantage of its additional expressive power. AE was

previously used for brightness modeling [28] and fig-

ure/ground organization [18]. We further extend its do-

main of applicability to object detection.

• Unlike [29, 30] where parts are patches specific to in-

dividual object views and appearances, we use part de-

tectors specific to object pose [2]. In this setting, we

define part-part and part-pixel interactions differently.

• Figure/ground organization, image segmentation, de-

tection of multiple object instances, and construc-

tion of per-object segmentation masks occur as conse-

quences of solving a single generalized eigenproblem.

All of these quantities are recovered from a new rep-

resentation of pixels and parts in the embedding space

defined by the solution eigenvectors.

Section 2 presents our algorithm, describing the coupling

between pixel and part layers, formulation of the optimiza-

tion problem, and interpretation of the solution eigenvec-

tors. Section 3 provides experimental results on the PAS-

CAL VOC person segmentation task. Section 4 concludes.
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Figure 1. System diagram. We construct a graph containing a node for each pixel and two nodes (part and surround regions) for each part

detection. Pixels connect to neighboring pixels within a fixed radius with affinity given by the intervening contour cue [10]. Part nodes

connect to one another with affinity determined by their agreement on object pose. Each part node is pushed away from its corresponding

surround node to enforce figure/ground separation. A dummy node connected to all parts and all pixels provides a weak prior that pushes

pixels into the background. Learned figure/ground masks for the parts [3] place requirements on agreement with the pixels they cover. The

diagram above displays a subset of the connections, using green arrows for affinity, blue arrows for ordering relationships, and gray arrows

for agreement requirements. We solve an Angular Embedding (AE) problem [28] which captures all of these interactions, and obtain a

segmentation of the image, a global figure/ground ordering on pixels, and a clustering of parts into detected objects.

2. Grouping Framework

In our system, low-level cues and high-level part detec-

tors work together to organize the image. Figure 1 illus-

trates the sources of information at play:

• Low-level cues bind pixels to one another, encouraging

them to respect region coherence.

• Part detections bind to each other according to their

compatibility of belonging to the same object.

• Parts pull the image region they cover into the fore-

ground and push the surrounding area into the back-

ground, providing a coarse figure/ground signal.

The rest of this section describes a method for integrating

these information sources to reach a global decision about

pixel and part grouping, a process we refer to as globaliza-

tion. While the integration framework depends only on the

relationship types, we also present a concrete implementa-

tion with cues that deliver good results in practice.

2.1. Globalization

Figure/ground interactions are of a fundamentally differ-

ent type than grouping relations between pixels or parts.

The portion of the image that should be considered figure

may be the union of multiple distinct objects and regions.

Objects can also occlude one another, suggesting a contin-

uous measure of figure/ground ordering is most appropriate

in capturing this aspect of scene layout. We use the recently

introduced Angular Embedding (AE) algorithm [28] as a

globalization framework, since it has the expressive power

to incorporate both affinity and ordering relationships.

A pair (C,Θ) of real-valued matrices captures pixel-

pixel and part-part interactions and defines the input to an

AE problem. Skew-symmetric matrix Θ specifies relative

ordering relationships. Symmetric matrix C specifies a con-

fidence on each of these relationships. We encode pairwise

affinity by setting relative ordering to zero and setting con-

fidence according to the degree of attraction. Figure/ground

relationships utilize nonzero relative ordering terms [18].

The output of AE is a representation of both pixels and

parts in a complex number space. Distance in this space re-

flects the notion of grouping, while the phases of the com-

plex numbers encode a global ordering. We capture pixel-

part relationships by imposing requirements on the solution

space of the embedding [31]. These requirements take the

form of a sparse matrix U whose columns specify linear

constraints involving pixels and parts.

Given C, Θ, and U , we solve for the complex eigenvec-

tors, z0, ..., zm−1, corresponding to the m largest eigenval-

ues, λ0, ..., λm−1, of the constrained AE problem:

QPQz = λz (1)

where P is a normalized weight matrix and Q is a projector



onto the feasible solution space:

P = D−1W (2)

Q = I −D−1U(UTD−1U)−1UT (3)

with D and W defined in terms of C and Θ by:

D = Diag(C1n) (4)

W = C • eiΘ (5)

where n is the number of nodes, 1n is a column vector of

ones, I is the identity matrix, Diag(·) is a matrix with its

vector argument on the main diagonal, • denotes the ma-

trix Hadamard product, i =
√
−1 and exponentiation acts

element-wise.

Following the procedure for constrained Normalized

Cuts [31], but with complex-valued matrices, (1) can be

solved efficiently and without explicit computation of Q by

modifying the inner loop of an eigensolver.

We defer interpretation of the resulting eigenvectors to

Section 2.4 and first describe how to construct C, Θ, and U .

2.2. Node Relationships

We encode relationships between n = np + 2nq + 1
nodes, where np and nq are the number of image pixels

and part detections, respectively. Denote pixels as pi and

parts as qi. For each part qi, we create an additional node

si representing its local surround. An extra node f enforces

a figure/ground prior through its connections to both pixels

and parts. C and Θ are n×n matrices with block structure:

np

︷︸︸︷
nq

︷ ︸︸ ︷
nq

︷ ︸︸ ︷
1

︷ ︸︸ ︷

C =







Cp 0 0 0
0 α · Cq β · Cs γ · Cf

0 β · CT
s 0 0

0 γ · CT
f 0 0







(6)

Θ = Σ−1







0 0 0 0
0 0 Θs Θf

0 −ΘT
s 0 0

0 −ΘT
f 0 0







(7)

where Cp stores affinity between pixels, Cq stores affin-

ity between parts, (Cs,Θs) encodes separation between

part and surround, and (Cf ,Θf ) encodes the figure/ground

prior. Weights α, β, and γ trade off the relative importance

of the relationship types during globalization. Σ is a nor-

malization factor involving the sum of the absolute values

of the entries of Θs and Θf :

Σ =
2

π
·
(

1Tnq
|Θs|1nq

+ 1Tnq
|Θf |

)

(8)

Scaling by Σ−1 guarantees that when embedding into the

unit circle of the complex plane to find a global ordering

(Section 2.4.1), the angular span of the optimal solution

does not exceed π. This scaling removes the potential wrap-

around effect in circular embedding.

2.2.1 Pixel Layer

As in recent effective image segmentation approaches based

on spectral clustering [5, 19, 1], we use the intervening con-

tour cue [10] to define affinities between pixels. We follow

the implementation in [19] of computing intervening con-

tour on top of a multiscale version of the Pb (probability of

boundary) edge detector [21]. Specifically, for pixels pi and

pj within a fixed radius of one another:

Cp(pi, pj) = exp

(

− max
x∈pipj

{Pb(x)}/ρ
)

(9)

where pipj is the line segment connecting pi and pj in the

image plane, and ρ is a constant. Cp is sparse as there are

no connections over distances larger than the given radius.

2.2.2 Part Layer

We take the publicly available poselet-based body part de-

tector of Bourdev and Malik [3] as our source of top-down

parts. Poselets are predictive of both object layout and local

figure/ground.

We use a part affinity function motivated by previous

work. In particular, Bourdev et al. [2] define a distance be-

tween poselet activations, which they subsequently use in

an ad-hoc greedy iterative clustering procedure. We use the

same distance metric, but convert it into an affinity so that

poselet grouping becomes one aspect of our globalization

process. For parts (or poselets) qi and qj :

Cq(qi, qj) = e−
DSKL(qi,qj)

τ e
min{S(qi),S(qj)}−1

υ (10)

where τ , υ are constants, DSKL is the symmetrized KL di-

vergence of the poselet keypoint distributions N k
i and N k

j :

DSKL(qi, qj) ∝
∑

k

[
DKL(N k

i ‖N k
j ) +DKL(N k

j ‖N k
i )

]

(11)

The second factor in Cq scales the affinity according to the

part detector scores S(qi) ∈ [0, 1] in order to discount weak

detections. Cq is dense, but C is still sparse since nq ≪ np.

We establish a local figure/ground ordering for each ob-

ject part qi by connecting it to its corresponding surround

node si with confidence and ordering given by:

Cs(qi, si) = e
S(qi)−1

υ (12)

Θs(qi, si) = 1 (13)

Separation between qi and si is only meaningful given their

connections to pixel grouping, which we discuss next.
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Figure 2. Eigenvectors carry ordering and clustering information. The leading m eigenvectors, obtained by solving an Angular Em-

bedding problem that captures our grouping relationships, provide a mapping of graph nodes (pixels, parts, and surround) into C
m. Left:

Shown are the first three complex eigenvectors, z0, z1, z2, for the pixel nodes of the example from Figure 1. Ordering is captured by ∠z0

(visible in the center panel on the right in Figure 1), which pops out figure from ground. The remaining eigenvectors encode clustering and

vary slowly within coherent regions. Right: The same is true for the detected parts, with clustering in C
m determining object membership.

Similarity between parts and pixels is also encoded by their proximity in C
m and permits extraction of object segmentation masks.

2.2.3 Pixel-Part Constraints

We encode part-pixel interactions as constraints on the em-

bedding solution. Each part node must take the average

value of its member pixel nodes, so that the part and pixel

representations are always consistent. For part node qi and

corresponding surround node si:

z(qi) ∝
∑

pj∈Mi

⌈Fi(pj)⌉e
|Fi(pj)|−1

σ e−
Pb(pj)

ρ z(pj) (14)

z(si) ∝
∑

pj∈Mi

−⌊Fi(pj)⌋e
|Fi(pj)|−1

σ e−
Pb(pj)

ρ z(pj) (15)

where Mi is the set of pixels overlapping the mask for de-

tection qi, Fi(·) → (−1, 1) is the local figure/ground pre-

diction made by this mask, and σ is a constant. The first

term within each sum selects a pixel’s membership in either

part or surround. The remaining terms weight its contri-

bution by the mask prediction and chance it belongs to a

region interior rather than a boundary. We write all of these

constraints in matrix form as UT z = 0. For computational

efficiency, we increase the sparsity of U by sampling a ran-

dom subset of image pixels to participate in the constraints.

2.2.4 Figure/Ground Prior

Image regions in which no parts fire are likely to be back-

ground, a fact not captured by the local part-surround rela-

tionships. To remedy this, we add an extra node f to act

as a weak figure/ground prior. We set f to be a weighted

average of all pixels (or a sampled subset of them):

z(f) ∝
∑

pj

e−
Pb(pj)

ρ z(pj) (16)

This constraint tacks another column onto U . Node f then

acts as surround with respect to each part qi:

Cf (qi) = e
S(qi)−1

υ (17)

Θf (qi) = 1 (18)

In absence of other evidence, placing pixels into the back-

ground shifts the location of z(f) and better satisfies these

ordering preferences.

2.3. Parameters

Two sets of parameters control our grouping algorithm:

(ρ, σ, τ, υ) govern affinities and (α, β, γ) control relative

importance of subproblems. We set ρ = σ = υ = 0.1,

interpreting numerators in their respective affinities as prob-

abilities. We set τ appropriately with respect to DSKL. One

could learn (α, β, γ) by stochastic gradient descent on a val-

idation set. This is computationally expensive and we be-

lieve the system is not too sensitive to these parameters, so

we instead set them manually.

2.4. Decoding Eigenvectors

The complex eigenvectors, z0, z1, ..., zm−1, of Equa-

tion (1) corresponding to the m largest eigenvalues define

an embedding of the graph nodes into C
m. Figure 2 dis-

plays an example. By design of the optimization prob-

lem, the locations of the nodes in C
m are meaningful, in

terms of both ordering (given by z0) and clustering (given

by z1, ..., zm−1). Figure 3 illustrates that applying simple

transformations to the eigenvector representation allows us

to “decode” solutions to our ordering (figure/ground) and

clustering (segmentation and object detection) problems.



Figure 3. Decoding eigenvectors. Each Subfigure - Top Row, Left: Image. Middle: The angle of the leading complex eigenvector defines a

global figure/ground ordering [18] as shown, with red indicating figure and blue indicating ground. Here, the notion of figure is category-

specific and means belonging to the person class. Right: The eigenvectors define an embedding into a space in which the distance between

graph nodes is perceptually meaningful. On the pixel grid, the gradient of the eigenvectors yields an edge signal [19]. From this, one can

construct a hierarchical segmentation [1], one level of which is displayed here with each region taking its average color. Bottom Rows:

Running agglomerative clustering on the eigenvector representation of the part nodes merges them into distinct object detections. Using

distances between pixels and parts in the embedding space, our algorithm recovers object ownership of pixels. For each detected object

instance, we show its bounding box, the body keypoint locations (head, left shoulder, right shoulder, etc.) predicted by the parts belonging

to it (colored according to keypoint type), its instance-specific figure/ground mask, and the object extracted from the scene using this mask.

2.4.1 Figure/Ground

As previously shown [28] and applied specifically for

bottom-up figure/ground organization [18], ∠z0 defines a

global ordering on nodes which best respects the local rel-

ative ordering relationships specified in (C,Θ). Hence, to

obtain figure/ground, the transformation is simply to eval-

uate ∠z0 on the pixel nodes. Multiplying ∠z0 by Σ then

translates back to the original scale in which we specified a

unit separation between figure and ground.

2.4.2 Segmentation

Eigenvectors z1, ..., zm−1 give an embedding into C
m−1

which maps globally similar nodes to similar locations.

We can group nodes into discrete clusters by simply merg-

ing nearby nodes according to their distance in C
m−1.

An algorithm that uses this principle, while also exploit-

ing the two-dimensional layout of the image, is to take a

weighted combination of the gradients of the eigenvectors,

∇z1, ...,∇zm−1, (evaluated on the pixel grid) in order to



recover a global contour signal [19]. Using image morphol-

ogy tools, we can then construct a hierarchical segmentation

from the contours [1]. The top right panel for each example

in Figure 3 shows regions obtained using this process.

2.4.3 Object Detection

Just as merging pixels based on their proximity in the em-

bedding space groups them into regions, merging parts

based on proximity in this space groups them into objects.

The one caveat is that not all parts belong to some object,

as our part detector is imperfect. Therefore, we employ a

two-step procedure of agglomeratively merging parts into

potential objects and then filtering out part clusters that do

not appear to be plausible object detections. Our algorithm

then once again exploits the embedding representation to

derive per-object instance segmentation masks.

In particular, part nodes are merged into object detec-

tions according to a weighted L1 distance in C
m−1:

D(qi, qj) =
m∑

k=1

1√
1− λk

|zk(qi)− zk(qj)| (19)

This metric is analogous to that used for the pixel nodes,

with the same eigenvalue weighting term. While merging,

the distance between clusters is the maximum distance be-

tween any of their contained parts. This procedure termi-

nates at a fixed distance threshold.

Though the partitioning of parts into distinct object

hypotheses is done using only information contained in

the eigenvectors, the learned object model predicts object

bounding boxes and scores hypotheses based on their mem-

ber parts. Hypotheses whose predicted bounding boxes

overlap significantly, as measured by intersection over

union, are automatically merged. We employ the linear dis-

criminant classifier of [2] to score each hypothesis.

After accepting or rejecting hypotheses based on a score

threshold, our algorithm returns to the eigenvector represen-

tation to pull out the pixels belonging to each individual ob-

ject. This object-specific segmentation step is distinct from

the generic region segmentation created in Section 2.4.2.

Our distance metric (19) is meaningful not only between

pairs of parts but also between parts and pixels. Denote by

{Qi} the set of confirmed object detections, where each Qi

is itself a set of parts {qj}. We map each pixel pk to the

object containing the closest part covering it:

pk → argmin
Qi







min
qj∈Qi
pk∈Mj

{D(pk, qj)}







(20)

where Mj is once again the region of the image overlapped

by part qj . This results in a partition of the figural pixels

into distinct objects, as shown in the bottom third column

for each example of Figure 3.

3. Experiments

We evaluate our system on the PASCAL VOC 2010

dataset and compare results to those obtained by Bourdev

et al. [2] on the segmentation challenge for the person cat-

egory. We use 150 poselet detectors. On each example,

our system acts on the exact same set of part detections as

this baseline top-down system, with the only difference be-

ing their coupling to low-level cues through our grouping

framework. The task of each system is to assemble these

parts into object hypotheses, with the baseline algorithm

accomplishing this by agglomerative merging according to

DSKL (11) and our algorithm instead relying on distance

in the embedding space (19). Both algorithms use the same

hypothesis scoring function and same detection threshold.

Though our system produces pixel-level object segmen-

tations as a byproduct of grouping, we temporarily ignore

this output in order to facilitate a strict comparison. Instead,

we compare object masks generated by averaging the masks

of their member poselets according to the procedure given

in [2]. Thus, we remove from the evaluation the factor of

our object segmentations versus those obtained in the post-

processing contour alignment step of [2]. We benchmark

the results shown in the second column of Figure 4, even

though we also generate the higher-quality segmentations

visible in the later columns. This handicap ensures that any

improvements on the benchmark must be due to our low-

level cues assisting in part grouping and object detection.

We achieve an 11% relative boost in pixel accuracy over

Bourdev et al. when comparing object masks for the per-

son category on the PASCAL 2010 segmentation test set

(absolute score of 39.5 compared to 35.5, each as reported

by the automated PASCAL VOC evaluation server). This

boost is entirely a result of our grouping framework, as

neither system tested uses multi-class context or does any

post-processing (though work contemporaneous with ours

shows gains by exploiting such techniques [4]). Although

not our focus, reclassifying each region in our output seg-

mentation according to all available single-class cues (pre-

dicted bounding box, poselets, and figure/ground ordering)

further improves our person segmentation score to 41.1.

Figures 4 and 5 show that integrating low-level in-

formation helps detection. We automatically extract de-

tailed masks that conform precisely to object boundaries,

as shown in the third column of Figure 4. Our system also

handles unusual poses (top middle example of Figure 5)

that cannot be segmented using the top-down poselet model

alone. In addition, our system filters occluding objects, such

as the bike in the first example, or the chair and desk in the

last example of Figure 4, from returned person detections.

Most importantly, the low-level cues assist in part grouping

and allow our algorithm to find people missed by the top-

down scanning of Bourdev et al. Figure 5 shows examples

that our system pushes over the detection threshold.



Figure 4. Person detection results. Left: Image and detection bounding boxes. Middle Left: Object masks formed by averaging the

poselets grouped together by our globalization process. This prediction is analogous to the bottom second columns of Figure 3. Middle:

Object masks obtained using the full representation produced by globalization. Note how these masks conform to the true object boundaries

and respect occluders present in the scene. Middle Right: Foreground extracted by multiplying the image with object masks in the middle

column. Right: Binary classification of regions belonging to the person category using both mask and bounding box predictions. All

examples are from the PASCAL VOC 2010 test set.

4. Conclusion

Our algorithm combines segmentation cues with object

detection in a soft manner. By doing so, we boost the perfor-

mance of a state-of-the-art person detector. Our framework

offers additional advantages not reflected in the quantitative

evaluation, as it transforms an image into a representation

containing a complete description of the scene in terms of

figure/ground, segmentation, and object instances.



Figure 5. Detections boosted by low-level cues. Shown are some of the examples from the PASCAL VOC 2010 test set that are missed

by the top-down poselet system but correctly detected by our joint grouping framework. Low-level cues appear to help in cases of unusual

pose (top row, middle) or partial occlusion (bottom row, right). We display bounding box and figure/ground output.
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