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Linear Scale and Rotation Invariant Matching

Hao Jiang, Member, IEEE, Stella X. Yu, Member, IEEE, and David R. Martin

Abstract—Matching visual patterns that appear scaled, rotated, and deformed with respect to each other is a challenging problem. We
propose a linear formulation that simultaneously matches feature points and estimates global geometrical transformation in a
constrained linear space. The linear scheme enables search space reduction based on the lower convex hull property so that the
problem size is largely decoupled from the original hard combinatorial problem. Our method therefore can be used to solve large scale
problems that involve a very large number of candidate feature points. Without using prepruning in the search, this method is more
robust in dealing with weak features and clutter. We apply the proposed method to action detection and image matching. Our results on
a variety of images and videos demonstrate that our method is accurate, efficient, and robust.

Index Terms—Scale and rotation invariant matching, deformable matching, linear programming, action detection, shape matching,

object matching.

1 INTRODUCTION

FINDING the point-to-point correspondence of related
visual patterns is a fundamental problem in computer
vision. Many applications such as stereo, motion estimation,
object detection, and action detection benefit from accurate
and fast matching algorithms. Visual matching is also a
challenging problem because the imagery of an object may
have large variations, e.g.,, geometrical transformations,
deformations, and appearance changes in different viewing
conditions. In this paper, we propose an efficient linear
solution to the visual matching problem which yields
reliable results even when there is large rotation, scaling,
translation, deformation, and clutter.

Different methods have been proposed to solve matching
problems. The Hough transform [36], [1], [2] and RANSAC
[35], [3], [34] are robust methods that have been widely
used in object matching. The Hough transform requires a
careful selection of its parameters (e.g., bin size) and breaks
down in the presence of strong clutter. RANSAC is more
resistant to clutter: It generates matching hypotheses for a
small number of anchor points and then evaluates the
hypotheses using all the model points. RANSAC becomes
increasingly slow with weak features or strong clutter. To
reduce the complexity, prepruning methods based on
heuristics or General Hough Transform have been used
[3] to remove unpromising local matches. However, when
local feature matching becomes increasingly ambiguous,
the prepruning process is less and less effective. Besides, the
Hough transform and RANSAC find the overall geome-
trical transformation, but do not directly give point-to-point
deformable object matching.
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Another class of methods, graph matching, directly
optimizes the point-to-point correspondence. By optimizing
an energy function that contains a unary data term and
pairwise or higher order smoothness terms, graph matching
enforces the matching to be consistent. Graph matching is
NP-hard in general. For special cases where the graphs have
no loops or the target candidates have linear orders, exact
polynomial-time algorithms such as dynamic programming
(DP) [4] and max flow [5] can be used. For general graph
matching in which the graph template contains cycles, an
exact solution is often too slow to be feasible for large scale
problems.

Various approximate methods for graph matching have
been developed. Iterative Conditional Modes (ICM) [7] is a
local optimization method that gets easily trapped in local
optima. Back tracking [6] with heuristics for search tree
pruning has been proposed to explore the search space
globally. This method has been successfully applied to rigid
object detection. Graph cuts [8] and belief propagation (BP)
[10] are recent global search methods that have been
successfully applied to a range of matching problems,
including stereo [9], [11], motion estimation [17], object pose
estimation [13], tracking [12], and recognition [14]. BP often
has a linear to quadratic complexity with respect to the
number of target candidates and becomes slow when
searching over large ranges in target images. Specialized
message passing methods [41] have been proposed to
improve the efficiency of BP. However, for large scale
problems that contain a very large number of target
candidates, the algorithm’s complexity is still quite high.

Mathematical programming is another approach to
graph matching. Soft-assign [15] with its extension [16] is
one of the few methods that handle large object deforma-
tions. It employs an iterative routine that alternates between
point matching and global transformation estimation.
Combined with shape context, this scheme has been used
in shape matching [20]. Recently, global search methods
have received a lot of interest. Concave programming [32] is
proposed to match point sets. Spectral graph methods [33]
approximate the discrete optimization using convex relaxa-
tion and find point correspondence by solving eigenvector
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problems. Another convex programming [42] method,
semidefinite programming, has also been used to relax a
graph matching problem so that feature matching can be
globally optimized [37], [38].

The high complexity of general mathematical program-
ming for large scale problems limits its usage in practical
applications, while linear programming, the simplest form of
mathematical programming, is found to be a powerful
method for solving visual matching problems both reliably
and efficiently. Jiang et al. [19] propose an efficient linear
programming method that does not take into account the
scaling and rotation in feature point matching. Berg et al.
propose an integer quadratic formulation and a linear
relaxation [18] for scale-invariant object matching. Torresani
et al. [39] propose a dual decomposition scheme to relax the
integer quadratic program. Komodakis and Paragios [40]
propose another dual decomposition method for linear
relaxation. Glocker et al. [22] use primal-dual linear pro-
gramming in medical image registration. The linear formula-
tion is based on [25] and this method only computes local
deformations. Taylor et al. [23] propose an interior point
method for image registration. A novel method is proposed
to take advantage of the special structure of this formulation
to handle large scale problems. To further improve the
efficiency, a multiple scale method is applied. Komodakis
and Tziritas [24] derive a graph-cuts-like optimization
methods for metric labeling based on primal-dual linear
programming. This method improves the result on motion
estimation, stereo, and image denoising. Shekhovtsov et al.
[26] propose a linear method that models local affine
constraints. Message passing on trees (TRW-S) is used to
solve the linear program efficiently. This method is applied to
2D local deformable matching. Most current linear methods
for image matching focus on metric labeling and applications
such as stereo and motion estimation. They are not easily
extended to matching problems that involve large rotations
and scale changes.

Even though intensively studied, optimizing scale and
rotation invariant point-to-point visual matching is still a
hard problem, especially for weak features and problems
with a large number of candidate points. In this paper, we
study how to explicitly incorporate scale and rotation
inference in a linear programming framework and how it
can be efficiently solved. We propose a novel linear
formulation of scale and rotation invariant matching. Using
the lower convex hull property, we can effectively solve the
linear problem on a small number of lower convex-hull
vertex variables. Our method thus has a complexity rather
independent of the number of target candidates, making it
suitable for very large scale problems. The result can be
further improved by successively shrinking trust regions.
Our extensive experimentation demonstrates that the
proposed linear solution is accurate, fast, and robust, and
it works well with both scale and rotation invariant features
such as SIFT [3] and noninvariant features such as shape
context [20], shape flow [30], and simple image patches. The
proposed method has been successfully applied to action
detection [30] and object matching [31].

The arrangement of the rest of the paper is as follows: In
Section 2, we formulate scale and rotation invariant
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Fig. 1. Our matching criterion minimizes feature matching cost and
spatial matching cost. The feature matching cost is determined by the
difference of the feature vectors associated with each model point p and
its match f(p). The matching cost may depend on the object global
transformation 7. The spatial matching cost is determined by the
difference between the vectors (p, q) and (f(p),f(q)), which is invariant
to unknown global scaling and rotation.

matching into linear programs. We propose how to simplify
the linear programs for efficient solution, and we study a
successive scheme to refine the linear approximation for
accurate results. In Section 3, we benchmark the proposed
method using synthetic data and compare it with other state
of the art methods. In Section 4, we illustrate how the
proposed method can be used in action detection [30] and
object matching [31]. We conclude the paper in Section 5.

2 ScALE AND ROTATION INVARIANT MATCHING

Given two sets of points, each point is associated with a
single feature vector or a sequence of feature vectors for
different global transformations; we would like to find the
point-to-point correspondence of the model set with the
target set that is a globally translated, scaled, rotated, and
locally deformed version of those model points embedded
in irrelevant clutter points (Fig. 1). In the following, we
show how scale and rotation invariant matching can be
formulated and further simplified into linear programs.

2.1 Criterion

Our goal is to find, for every model point, a corresponding
target point so that they share similar local features and
pairwise spatial connections. Formally, let M be the set of
model points and N the set of all pairs of neighboring
model points. Let f(p) be the target point matched to model
point p. The objective function minimizes both feature and
spatial matching costs:

min
£7

Y e fP)+A D gr(p.a,f(p),f(a))

peEM {p.ateN

Here, cr is the feature matching cost, which is small if the
model point p and target point f(p) have small feature
difference under the global transformation T gr is the
spatial matching cost, which is small if the spatial
connection (p, q) is similar to (f(p),f(q)) under the global
transformation 7; and A controls the relative weight of the
two terms. Since we directly match points from a template
to targets, such a formulation is able to deal with arbitrary
translations.
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We can write the scale and rotation invariant objective
function as

Iflilg{ ZC(‘LR(Pvf(P)) +A Z [R-(p—a)

peM {p.ateN (1)
— s (f(p) —f(q))l},

where s and R are unknown scaling factor and rotation
matrix, respectively. In this paper, we are most interested in
¢(.) that is scale or rotation invariant, for which the
proposed method achieves the most efficiency. Apart from
scale and rotation invariance, this formulation is also
invariant to translations. As shown later, even for non-
invariant matching costs the proposed method can still be
used for efficient optimization. In contrast to other ways of
constructing a scale and rotation invariant matching
objective function, e.g., by constraining the pairwise lengths
between model point pairs and target pairs, our formula-
tion can be converted to a simpler linear formulation and
solved efficiently.

The nonlinear optimization problem in (1) involves both
discrete and continuous variables. For real applications,
there are a large number of model points and target points.
Exhaustive search is not an option. Our idea is to convert
the problem into a small set of convex programs which can
be efficiently solved. For the rest of the paper, we assume
points are in 2D and their spatial matching cost is measured
with the L; norm, although our approach can be extended
to higher dimensions, as well as the L, norm.

To facilitate the discussion, we start from a formulation
in which the local feature matching cost is scale and rotation
invariant, ie., ¢;r(p,f(p)) can be written as c(p,f(p)),
which is only dependent on the model point and target
candidate point locations. In the following sections, we first
write the optimization in matrix formulation; then, we
study how to linearize it so that it can be relaxed into linear
programs; we further show how the linear formulation can
be extended to accommodate general local cost functions;
finally, we study how to efficiently solve the linear
programs using the variable reduction method.

2.2 Matrix Formulation

It helps to clarify the formulation by writing the optimiza-
tion in a succinct matrix form. We introduce an assignment
matrix X to express the matching from model points to
target points. Let 1,, denote a column vector of n 1s, " matrix
transpose, tr the trace of a matrix, and | - | the summation of
absolute values of all the elements in a matrix. In matrix
form, the optimization becomes

min (X, s,R) = tr(C'X) + \|EMR — sEXT)|
subject to X1, =1, ,X € {0, 1}'nmwf 2)
s>0,RR=1,

where n,, denotes the number of model points | M| and n,
the number of target points. Here, to simplify the discus-
sion, we assume model to target point matching costs to be
invariant. The invariance indicates that the overall matching
costs are only related to the positions of model and target
points. We will show how this condition can be relaxed in
the later sections.
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There are three unknown variables:

X = n,, x n; binary assignment matrix. Each row of X
contains exactly one 1: X(7,j) = 1 indicates that model
point 4 is matched to target point j.

s = global scaling factor.

R =2 x 2 global coordinate rotation matrix. It is in fact the
transpose of the R in (1).

and four known matrices:

M = n,, x 2 model point coordinate matrix.

T = n; x 2 target point coordinate matrix.

C = n,, x n, feature matching cost matrix. C(z, j) is the
feature matching cost between model point ¢ and target
point j which is computed using ¢(.) in (1) with the
assumption that it is scale and rotation invariant.

E =n, x n,, edge-node incidence matrix for the model
graph, where n. = |N|. Each row describes an edge
with exactly two non-zero numbers: 1 and —1, and their
signs can be switched. For example, E(e, i) =1,

E(e, j) = —1 indicate edge e connects nodes i and j in
the model.

We make four additional comments regarding the
formulation.

1. In our model, the constraint on X does not force
model points to match unique target points. Match-
ing multiple model points to a single target point is
in fact necessary if the target object shrinks. The unit
sum constraint on rows of X also implies that each
model point matches a target point. This assumption
is shown to be not restrictive. As will be shown later,
the occluded model points can still match correct
target points based on the structure constraint.

2. XT, which will be used to compute the target
locations, is involved in spatial regularization. It
represents valid target locations even when X is
relaxed into floating-point numbers, in which case
the target point locations are linear combinations of
target candidate points.

3. We can take reflection into account by dropping
s > 0: A negative s simply means that the spatial
connection in the image could be a mirror reflection of
that in the model (after rotation), scaled by factor |s|.
Our method can be extended accordingly.

4. It is essential to separate scale and rotation in the
spatial matching cost. If we combine scale s and
rotation R into one similarity transform S = R/s, i.e.,

min (X, S) = tr(C'X) + \|[EMS — EXT),

we would introduce a strong bias favoring small
scales. Even though the formulation is seemingly
simpler, it is wrong and results in matching a small
pattern in the image.

2.3 Linearization

Instead of directly solving the hard mixed integer nonlinear
program in (2), we convert it into linear problems which can
be efficiently solved. There are three obstacles in linearizing
(2): 1) the L; norm in the spatial matching term, 2) the
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Scale ns

Model
object

Scale 1

Fig. 2. Scale linearization. The assignment matrix X is expanded with
another dimension, the scale, and form {X;}; the scaled assignment
term sX in the spatial matching cost becomes linear.

nonlinearity introduced by the multiplication of the integer
variable X and the continuous variable s, and 3) the
quadratic constraint on the rotation matrix R.

2.3.1 Ly Norm Linearization

We introduce two n. x 2 nonnegative auxiliary matrices, ¥’
and Z, to turn the L; norm optimization into a linear
objective with linear constraints. It is well known that

min|z| < min  y+z
subject to y—z==x
y>0,22>0.

Applying to every element of EMR — sEXT, we have

min e(X,s, R, Y, Z) = tr(C'X) + AL, (Y + Z)1,
subject toY — Z = EMR — sEXT (3)
Y >0,7 > 0.

Intuitively, for each element pair in Y and Z, at most one of
them is nonzero as ¢ is minimized. Otherwise, we can
always subtract the values with the smaller one of each pair,
zeroing out at least one of the values; the solution remains
feasible and achieves lower energy, which contradicts the
assumption that the ¢ has achieved the minimum. Based on
this property, the sum of all the elements in Y and Z, when
the objective is minimized, must equal |[EMR — sEXT).

2.3.2 Scale Term Linearization

The quadratic term sEXT in (3) has to be linearized. The
idea is that we quantize the scale into discrete levels and we
further introduce matching variables X; at multiple scales
so that

X=>X.
l

Ideally, X, I = 1..n,, should contain a single 1 at the correct
scale corresponding to the true target point; other elements
in X;, [ =1..n,, should all be zero. Matrices X;, [ = 1..n,,
therefore augment the assignment matrix X with a new
dimension, the scale. It is helpful to imagine the stack of X,
l = 1..n,, as a 3D matrix which indicates the assignment at a
specific location and a specific scale. If we collapse Xj,
l = 1..n,, along the dimension of scale, we obtain X. We can
now transform the multiplication of s and X in (3) into a
linear function of X; subject to linear constraints among s,
X, and X. Illustrated in Fig. 2, s is quantized into n, discrete
values, 0 < s; < --- < s,,,. Fig. 2 shows how the matching
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linearized constraint:
utov==+1
lul <1, v[ <1

original constraint:
w2+ =1

Fig. 3. Rotation linearization. The orthonormal constraint on the rotation
matrix R is approximated by four line segments.

from a model point to a target point is augmented with this
new scale variable. This can also be viewed as matching
multiple templates in different scales to the target; we
therefore have to decide which scale needs to be used. The
nonlinear term sX can now be represented as a linear term:

N
sX = Z SZXla
=1

and therefore

N
SEXT = siEX/T.
=1

Recall that since X1,, =1, , we also have the constraint

Ng

§ SIXZLLI = Slnmv

=1

which forces each model point to select the same scale in
matching. As we relax the binary constraints on X; to any
value within [0, 1], s is no longer restricted to a discrete level
s;, but can be any real number within [sq, s,,].

2.3.3 Rotation Term Linearization

We reparameterize the rotation matrix R in terms of its
elements u, v, and approximate the orthonormal constraint
u?+v? =1, ie., a circle in the uv plane, with four line
segments (Fig. 3):

RR=1 =

utv==21, |ul <1, v <1

Even though more line segments may refine the approx-
imation, they also introduce more linear programs and
increase the complexity. We found four line segments
present sufficient approximation. The linear approximation
in fact introduces different scales for different rotation
angles. However, since we optimize the scale and rotation
simultaneously, the distortion does not pose a problem.

2.4 The Linear Program

Overcoming the three obstacles, we reach a complete
linearization of the original optimization problem in (2):
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LP: mine(X,s,u,vY,Z,X,...,X,,)
=tr(C'X) + A1, (Y + Z)1,,

u —v [ls
wmmmY—Z:EM{ ]—Z}E&T
v u =1

Y,Z >0,
Ng

X=X, X >0V
=1

utv==1, [u/<1, [v/<1

Ng

ZSIXZLL, = 3]-'nm
=1
X1, =1,,X>0.

If we constrain X and X to be binary matrices, this linear
mixed integer program is equivalent to the original
problem. We relax X into continuous domain so that the
optimization can be efficiently solved. The optimal target
point coordinates are computed by 7" = XT, after the
optimal X is found for the LP.

2.5 Extensions to More General Cases

In the above formulation, we assume that the matching cost
matrix C is invariant to both scale and rotation. We can
extend the formulation to more general cases.

Sometimes, it is convenient to use matching costs that are
rotation invariant but are not scale invariant. We denote the
matching cost matrices at scale 1 to scale ng as
C1,Cy,...,C,, and the linear program can be rewritten as

min{z tr(C/ X7) + A1, (Y + Z)lg}, (5)
l

with the same set of constraints.

We can further extend the linear formulation to the case
in which the matching costs are neither scale nor rotation
invariant. Similar to the scale linearization, we quantize the
rotation angles into discrete levels 6y,6,,...,0,,. Let Xj;
indicate the assignment at scale [ and rotation k. X; and X,

are related by
Xi=> X
%

We further introduce a matrix Xy, and let
X@k = ZXUC and X = ZX@,‘,.
] k

We require that each model point should choose the same
rotation angle in matching

ng

Z HkXﬁklm = elnm'

k=1

With constraints in (4), we optimize the objective function

min{Ztr(C;‘leﬁk) + A1, (Y + Z)lg}, (6)
Lk

where (), is the matching cost at scale { and rotation .

2.6 Lower Convex Hull Property

The LPs in (4), (5), or (6) are much easier to solve than the
original mixed integer program, but a direct solution would
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Fig. 4. Convexification using lower convex hull. The actual cost surface
of the integer program is nonconvex (a). Relaxing the variables in X
yields a linear program, the solution for which lies on the lower convex
hull (b) of the original cost surface. Any variables corresponding to
points above this surface are redundant in the linear program, so they
may be pruned (c).

still be slow because the number of variables is proportional
to n,, X ny x ng. Fortunately, we do not need to solve the
large LPs. In the linearized formulation, not all of the target
points are effective. By removing the ineffective target
points, we can simplify the linear programs without
changing the optimal solution.

Property 1. If the local matching cost is scale and rotation
invariant, for each model point p, the effective target points t
and their associated feature matching costs c¢(p,t) correspond
to the vertices of the lower convex hull of the point cloud
{(t,c(p,t)) : Vt}. Here, ¢(p,t) corresponds an element of C'
to the model point p and target candidate point t. We define
the target points “effective” if they are used in the linear
program construction.

Recall that the LP in (4) uses a linear combination of
target point costs to approximate the original matching cost
and the target location is a linear combination of the target
candidate points, ie., XT. If we expand the matrix
formulation, for each model point p we have ), t-zp; =
tp and ) zp¢ =1, in which zp¢ is an element of X
corresponding to model point p and target candidate
point t. For each model point, at each fixed scale, rotation
and matching target location, the minimum objective
function is achieved by minimizing the data term of the
objective function in (2), i.e., the linear combination of all
the matching costs for the model point. For model point p,
optimizing the objective >, c(p,t)zp¢ can therefore be
achieved by adjusting the weight =, under the constraint
dit-apy =tpand ), zp = 1. The optimum point must be
a point on the lower convex hull of the matching cost surface
¢(p,t) over t. Shown in Fig. 4, a lower convex hull is the
tightest envelope that supports the 3D point cloud (t, c(p, t)):
At each location the cost achieves the lowest possible value
by a suitable linear combination of the point clouds.

The vertices on the lower convex hulls are all we need to
represent cost surfaces. For each model point, the candidate
points corresponding to the lower convex hull vertices are
effective target candidate points. The elements of X and X;
that do not correspond to lower convex hull vertices are
zero, and only the vertex variables in X and X; participate
in the linear program pivoting. As shown before, for fixed
scale s, rotation angle 6, and target location of each model
point or equivalently fixed XT', we can choose X so that the
lowest objective function achieves on the lower convex hull
of each matching cost surface, i.e., nonzero elements in X
must correspond to the vertices of a facet on each lower
convex hull (the facet may degenerate into a single vertex or
an edge). Therefore, all of the X variables that do not
correspond to the lower convex hull vertices are zero;
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otherwise, we can reduce the objective function by choosing
X corresponding to a lower convex hull facet below these
nonzero vertices. Note that as we assume X7 is fixed, the
smoothness term is fixed too and therefore can be ignored
in the reasoning. As we assume arbitrary scale, rotation
angle, and target location, our conclusion is general. Given
X, we can always find X; that are nonzero only for the same
set of lower convex hull vertices as those for X to satisfy the
constraints sX =3, 5,X; and Y )", s,X;1,, = s1,,,. This can
be achieved by solving a simple linear system. For each
model point, the linear program therefore approximates the
original optimization problem by replacing the matching
cost surface with its lower convex hull.

The above property means that we can select the
effective target candidates for each model point and discard
the rest so that the linear program can be solved efficiently.
Since the shape of the lower convex hull is not directly
related to the number of target points but only to their
overall structure, the number of effective target candidates
and the size of the linear program are greatly decoupled
from the number of the target points.

Property 2. If the local matching costs are scale dependent, we
only need to keep those target points t, scales s, and their
associated feature matching costs c(p,t, s) that correspond to
the wvertices of the lower convex hull of the point cloud

{(Sta S, Cp,ts) : Vt}

When the cost surface is scale variant, we need to
compute a 4D lower convex hull of the point cloud
(sz, sy, 8, (Tm, Ym, T, Y, S)), where (z,,,ym) is a model point
and (z,y) is a target candidate point. Imagine a 3D volume
with coordinate (z,y,s), in which each point at (sz, sy, s)
has a value ¢(2,, Ym, 2, y, $). The 4D lower convex hull of the
point cloud is a volume in which each point’s value is the
minimum of all the linear combinations of the 4D point
costs (the values of the 4th coordinate). Similarly to 3D
cases, only vertices at locations (z,y) and scales s on the
lower convex hulls need to be used in the optimization.
With this property, the size of the LP is roughly decoupled
from the levels of the discrete scales.

Property 3. If the local matching costs are both scale and rotation
dependent, we only need to keep those target points t, scales s,
angles 0, and their associated feature matching costs
c(p, t,s,0) that correspond to the vertices of the lower convex
hull of the point cloud {(st,s,0,c(p,t,s,0)) : Vt}.

Comparing to solving the original intractable nonlinear
and nonconvex optimization, the linear relaxation can be
solved efficiently. Using the simplex method [21], its
average complexity is roughly proportional to the logarithm
of the number of target candidate points. It is also more
efficient than the quadratic formulation based on pairwise
model point assignments [33], which has the average
complexity proportional to the square of the number of
target points. By using the lower convex hull trick, our
formulation makes the numbers of variables and constraints
largely decoupled from the number of target candidates.
The complexity of the proposed method is therefore nearly
independent of the number of target points. Fig. 5 shows an
example of how the number of lower convex hull vertices
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Fig. 5. The number of lower convex hull vertices relative to the number
of target candidate points in random point cloud matching. The template
contains 100 random points; the template is randomly scaled in [0.5, 2],
rotated in [0, 2], perturbed in 0-5 pixels pointwise and embedded in
noise points to form the target image. Shape context is used as the
matching feature. In each measurement, we compute the average
number of lower convex hull vertices for all of the model points. We
repeat 1,000 trials for each noise level setting. (a) The scatter plot.
(b) The average number of lower convex hull vertices almost keeps
constant as the number of target candidate points increases. (c) The
histograms of the number of lower convex hull vertices have similar
shapes as the number of target points scales.

corresponds to the number of target candidate points in
random point cloud matching. The number of effective
target points is largely decoupled from the number of target
candidate points. In our experiments, the number of
effective target points is about 20 for 200 target points in
shape context matching; the number is around 50 for about
2,000 target points in SIFT feature point matching and there
are around 60 effective target points for about 9,000 edge
points in local image patch matching.

We solve the LP using a modified simplex method with
GNU GLPK. Typically, using scale and rotation invariant
matching costs, for matching 100 model points and thou-
sands of target points, the LP converges in less than 1 second
ona 2.8 GHz PC. If the matching cost is not scale and rotation
invariant, the complexity of precomputing the local cost
matching may dominate the complexity of the method
because the local matching costs are needed to be computed
in different rotations and scales. Parallel computing methods
can be used to relieve the problem. The optimization can still
be accelerated by using the lower convex hull trick to reduce
the size of the LP.

2.7 Successive Refinement

The above solution provides a linear approximation to the
original combinatorial problem. It may yield a result that is
roughly correct but not accurate. A successive refinement
method is used to solve this problem. Instead of solving the
linear relaxation once, we iteratively solve a sequence of
linear programs, each of which linearizes the combinatorial
problem in smaller and smaller trust regions. For each
model point, a trust region is a rectangular region in the
target images. We refine the locations and the sizes of the
trust regions based on the linear solution in each LP
iteration. The trust regions in an iteration are rectangular
areas centered on the previous target point estimations. As
the trust regions become smaller, the result gradually
improves. Even though the trust region for the scale may
also be refined, for our applications we simply use its
largest trust region in each iteration. The scale and rotation
invariant matching algorithm with successive refinement is
summarized as follows:

1. Compute the feature matching cost matrix C, Cj, or
C} 1, between model features and target features.
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Fig. 6. Our matching error for fish is smaller than ICM and local matching
in terms of both the mean and the standard deviation, for the three levels
of clutter.

2. Initialize trust region for each model point to be the
entire target image.

3. Compute the lower convex hull vertices of matching
costs for each model point within its trust region.

4. Solve four linear programs in (4), (5), or (6), one for
each uv line.

5. Update the trust regions. If they are small enough,
find the linear program that has the lowest matching
cost € and output the matching result; otherwise, go
to 3.

We simplify the algorithm in the implementation. Instead of
solving four linear programs in each iteration, we only
refine the one that yields the lowest cost in the first iteration.
The simplified algorithm is still accurate and robust.

3 BENCHMARKING USING GROUND TRUTH DATA

Synthetic point set matching is used to benchmark our
algorithm. We use shape context as the feature. For each
target point, we compute shape context at seven different
scales ranging from 0.5 to 2 times of the template size, and
at multiple angles by shifting the shape context along the
angular axis. The feature matching cost is the minimal
x? distance between the model feature and all the scaled
and rotated versions of the target feature (7). We first
compare the performance of the proposed method with a
few low complexity methods, including local matching and
the greedy method ICM. We would like to confirm that the
proposed method has a big advantage over these simple
methods. For synthetic data, we give ICM the advantage of
knowing the right scale s and rotation R, ie., the same
energy function is used, but s and R are fixed to the correct
values. In local matching, the target point for each model
point is simply selected to be the one with the smallest local
matching cost.

Two synthetic point models are used: One is the fish in
Fig. 18 and the other is a random point cloud. The local
deformation is smooth for the fish and restricted to a random
shift of 0 to 10 pixels for the random point cloud. In the
experiment, the scale varies within [0.5, 2] and the angle of
rotationisin [0°, 360°). We consider three clutter levels, where
the number of random noise points is 50 percent, 100 percent,
and 150 percent of the number of model points. The matching
performance is quantified by the normalized histograms of
the error means and standard deviations over all the trials for
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Fig. 7. Our matching error for random point cloud is smaller than ICM or
local matching in terms of both the mean and the standard deviation, for
the three levels of clutter.

a specific noise and deformation setting. There are therefore
six test cases total. For an ideal matching method, the
normalized histograms for both the average error and the
standard deviation should have a unit peak at zero and
vanish everywhere else. In reality, the histograms that have
high values in low error ranges and a short tail in high error
ranges indicate good performance of a matching algorithm.
Figs. 6 and 7 show the normalized histograms computed over
200 random trials for each test case. Our LP solution
consistently gives smaller average errors than ICM with
known scale and rotation. The standard deviation histograms
also show that the proposed method has the most consistent
performance in matching. The local matching results are
always the worst. With increasing clutter, our method still has
ahigh chance of finding the right scale, rotation, and point-to-
point correspondences. The proposed method is also effi-
cient. It has a similar complexity to these greedy search
methods.

We further compare the proposed method with RAN-
SAC. RANSAC prunes the matches by comparing the ratio of
the best local match cost to the second best match cost with a
threshold. If the ratio is smaller than the threshold, the model
point and its best match target point are kept as a candidate
matching pair. In verification, RANSAC randomly picks up
three point pairs surviving in the local matching and
generates a similarity transform from the template to the
target. After globally transforming the template points, we
find the nearest target point for each template point and
compute the overall feature difference. We repeat this
procedure for a large number of times and keep the best
matching result. Since the RANSAC matching is not
deformable, we test the overall success rate—the percentage
of trials with average matching errors less than a threshold.
The fish data and random point data are used in the testing.
With proper parameter settings, RANSAC is quite reliable in
the low to median noise level tests. In the high level noise
tests, RANSAC breaks down. Fig. 8 shows the error
histogram of the proposed method and RANSAC for the
fish and random point test both with 200 percent noise
points. Table 1 shows that the overall success rates for the
proposed method and RANSAC. We set the threshold for a
correct match to 50, which roughly complies with the visual
inspection result. RANSAC uses a threshold 0.9 in preprun-
ing and generates 5,000 random hypotheses. As shown in
Fig. 8, the proposed method has better performance than
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Fig. 9. Comparison with RANSAC Test Il on fish (left) and random points
(right).

RANSAC. RANSAC is also slower than the proposed
method because it has to validate a large number of random
hypotheses.

The failure of RANSAC is due to the heuristics for
pruning the matching pairs: It always tries to find a nearest
neighbor for a template feature. When the noise level
increases, the nearest neighbor is less and less reliable;
RANSAC has to sample a large number of candidate
matches and becomes increasingly inefficient. When the
noise level becomes so high that no triple of correct
matching pairs can be found, RANSAC fails no matter how
many validation trials it takes. The proposed method does
not have this limitation because it uses all the candidates in
matching. To justify the robustness of the proposed method
against the corruption of the best matching candidates, we
repeat the fish and random point matching experiments
and purposely replace the best matching cost for each
template point with a large value. We compare the result of
the proposed method with RANSAC. In the fish and
random point tests, we add 50 and 100 clutter points,
respectively. The results are shown in Fig. 9 and Table 2.
The proposed method is little affected by the disturbance
and has much better results than RANSAC.

We further compare the proposed method with a recent
spectral graph matching method [33] and the widely used
iterative thin plate spline (TPS) method [20]. The spectral
graph method [33] is shown to be one of the most robust
methods for graph matching. TPS [20] has been successfully
applied to shape matching. These two methods represent the
state of art for image matching and are good candidates for
matching performance comparison. To be consistent with
our previous experiments, we use shape and rotation
invariant shape context as local features and use the fish
and random point data set in the test. The graph matching
method uses 3rd-order tensor and 3-point local groups.
Besides the shape context matching cost, the graph method
also uses inner angle differences of the local point groups as
a regularization term. We adjust the weight coefficients to

Stardard Deviation Average Matching Error Stardard Deviation

Fig. 10. Comparison with graph matching [33] and TPS using shape
context [20] on the fish test data.
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Fig. 11. Comparison with graph matching [33] and TPS using shape
context [20] on the random point data.

balance the two terms so that the spectral graph method
achieves the best performance. TPS [20] is an iterative
matching method that alternatively finds the point corre-
spondences and the global deformation. We use the demo
codes for [33] and [20] in the experiment. The comparison is
on the fish and random point data set on three different noise
levels: 50 percent, 100 percent, and 150 percent. Apart from
the noise points, each point of the random noise pattern is
also randomly perturbed by 0-10 pixels to simulate local
deformation. There are six test cases, for each of which we
conduct 200 trials. The fish data set comparison result is
shown in Fig. 10 and the random point comparison result is
in Fig. 11. The average error histograms and standard
deviation histograms show that the proposed method
performs better in all the test cases and degrades more
slowly as the noise level increases from 50 to 150 percent
than the graph matching and TPS methods. The average
errors in Table 3 further confirm the observation. Even
though graph matching and TPS work well in the low level
noise cases, they break down as clutter increases. The graph
matching method deteriorates quickly when the noise level
goes up to 150 percent and TPS breaks down when the noise
exceeds 50 percent. In terms of the complexity, the proposed
method is also many orders faster than graph matching or
TPS, especially for matching a large set of target points.
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TABLE 3

Average Errors in Matching
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Fish (50% clutter)

Fish (100% clutter)

Fish (150% clutter)

Point (50% clutter)

Point (100% clutter)

Point (150% clutter)

Proposed method

Graph matching [33]

TPS [20]

3.8026
13.5004
22.6079

7.3242
20.9156
89.4639

20.6566
64.7240
114.2155

1.9562
2.8631
83.0433

2.9529
9.7601
99.1534

4.3628
37:5275
130.8878

4 APPLICATIONS OF INVARIANT MATCHING

Our matching scheme is quite general and can be used in
various applications, including action detection and image
matching.

4.1 Action Detection

Action detection can be treated as a scale invariant
matching problem [30]. We match the movement of an
object in videos to models and determine whether a specific
action occurs.

We use flow lines, the 3D trajectory of features points in
the space-time volume, as local features. Flow lines can be
easily computed using a greedy method. We use iterative
conditional modes (ICM) to estimate the sparse point
motion between adjacent frames. ICM is applied to edge
pixels that surpass a Canny detector threshold; neighbor-
hood relations are defined by the Delaunay triangulation of
these edge pixels. The resultant sparse motion field is then
interpolated across Delaunay cells to produce a dense
motion field. The frame-by-frame motion fields produced
by this procedure are then simply concatenated to form 3D
flow lines in the space-time video volume. There are no
constraints to prevent flow lines from intersecting. This
method is designed to produce flow lines that are good
enough on average to generate a coherent flow field since
our robust matching procedure tolerates flow line errors.
Although the method is greedy, one can see from Fig. 12
that the result is actually quite clean. More accurate but
computationally more expensive methods such as [29]
could be used to improve the flow line extraction.

To detect specific actions in videos, we match an
exemplar clip to videos at each time instant using the
proposed linear matching method. The template shape flow
consists of a set of flow lines. These flow lines originate
from randomly selected edge points on the object. Pairwise
neighbor relationships between flow lines are given by
the Delaunay triangulation of the flow line start points.
Thus, the neighbor graph has cycles. All of the flow lines in
the template have the same temporal extent, but vary in
length due to motion.

The target search domain is a space-time video volume
with the same temporal extent as the template action. The

< i {
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Fig. 12. Example shape flows and first/last frames for a variety of
actions. Even though individual flow lines are noisy, the shape flow
represents the holistic shape and movement of the object reliably. We
show how to efficiently search for a template shape flow in a target video
using linear invariant matching.

search is performed over a randomly selected subset of flow
lines anchored by edge points in the first frame of the
volume. The goal is to find a consistent assignment of flow
lines in the template to flow lines in the target. Matched
flow lines should be similar, and the spatial arrangement in
the target should match that of the template. We use
normalized flow lines in which each flow line is normalized
by the longest z and y span. Simple euclidean distance is
used in computing the feature distance. The local matching
cost is roughly scale invariant.

An example of matching shape flow features is shown in
Fig. 13. Figs. 13a and 13b show the top-down view
(projected along the time axis) of a template shape flow
for a person waving both arms. Note that the shape flow
consists of a collection of flow lines (Fig. 13a) related by a
neighborhood graph (Fig. 13b) given by the Delaunay
triangulation of the flow line start points. Fig. 13c shows the
top-down view of the flow lines in the target video volume,
which are sampled from edge pixels in the first frame. Note
that the target is a different person at a different scale, and
that, individually, the target flow lines differ significantly
from those in the template.

Our proposed linear matching method’s success relies on
the combination of matching the loopy relation graph and
doing a robust global search. We can see the result of
removing one or the other of these elements. Fig. 13e shows
the result of our method if the loopy graph is replaced by a
chain. In this case, without cycles, the matching may be done
efficiently using DP. Fig. 13f shows the result of using the
fully loopy graph, but using ICM instead of our proposed

(d

() (f)

Fig. 13. Matching shape flows. A template shape flow (a) and its
neighbor relation graph (b) are matched to a target video (c). Note that
stationary points in (a) and (c) produce flow lines orthogonal to the page,
which are depicted as dots. The matching result using the proposed
method of this paper (d) is superior to the result achieved either by DP
(e) or iterative conditional modes (f). In (d)-(f), the blue dots denote the
start points of target candidate flow lines.
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Fig. 14. Detection of a complex 15-frame action in the 2,091-frame
gymnastics video. The action is the first half of a forward flip on the
balance beam. The top row of images shows frames sampled uniformly
in time from the video. Column (a) shows the action template along with
three frames (beginning, middle, and end) from the action. Columns
(b)-(e) show the top four matches. The sequence contains three true
positives, which are the top three matches. In this example, which
involves rapid and complex object motion as well as camera motion and
background clutter, there are no errors. (a) Template. (b) First match.
(c) Second match. (d) Third match. (e) Fourth match.

linear relaxation. The DP and ICM results are poor, despite
the fact that both methods were given the advantage of
having the template prescaled to the target scale.

After we find the matching of template shape flow with
targets, we further decide whether the matched target is the
same action. The energy function that we minimize to find an
action in a video frame is effective at locating the best match
within a frame. However, the energy values cannot be
meaningfully compared across frames. There are two reasons
for this. First, the flow line match cost in the linear program is
totally scale invariant, which is too lenient for a cross-frame
match score. And second, the energy will be artificially low
when the template is matched against a partially similar
action; for example, a template of a person waving one arm
will match well to a target waving two arms, but should not
be scored high. To address these issues, we formulate a more
robust similarity measure between the template shape flow
and the matched target shape flow. First, we normalize the
flow lines within each shape flow by the mean flow line
length, and translate each flow line start point to the origin.
The distance between these two bundles of normalized and
shifted flow lines is defined as the average minimum
distance between individual flow lines across bundles, which
is a symmetric measure. The distance between individual
flow lines is again defined as the euclidean distance between
the flow lines’ spatial coordinate vectors.

We first present action detection results for single actions
in two extended videos: Fig. 14 for the gymnastics video and
Fig. 15 for the golf video. In all cases, the top matches are
determined using the shape flow distance measure. These
videos involve fast object motion, camera motion, and
background clutter. In addition, the template and target are
always of different people, which introduces scale variation,
pose variation, and intraclass variation.

Fig. 14 shows match results for a complex 15-frame action
in the 2,091-frame gymnastics video. After applying non-
minima suppression in the time dimension to the per-frame

Fig. 15. The top 30 detections for a 8-frame swing template action in an
8000-frame video golf. There are 10 hits (with duplicates) of 14 true
positives and 11 false positives, yielding 71 percent recall and 63 percent
precision. This is a difficult video with few true positives compared to
negatives, and much camera motion.

match scores, the three true positives appear as the top three
matches. Non-minima suppression is not necessary, but
duplicate matches are pruned from the top list. Despite
background clutter, constant camera motion, and significant
intraclass variation, the proposed method is successful.

Fig. 15 shows results for an 8-frame swing action in the
8,000-frame golf video. The top 30 matches are shown over
the entire sequence. There are 10 hits of 14 true positives with
11 false positives, yielding 71 percent recall and 63 percent
precision (with duplicate hits removed). This sequence
involves much camera motion, a variety of individuals as
targets, and highly variable background clutter. In addition,
there are many distractor frames in which there is no
relevant object present.

We also report results for the action recognition data set
of Blank et al. [28] in Fig. 16. The data set consists of 93 single
action video clips for 10 actions performed by various
subjects. We extract a single 15-frame shape flow template
for each action by randomly choosing a 15-frame sequence
from a randomly chosen clip. Each template is then matched
against each frame in the set of test clips (excluding the
template clip). The match cost for a clip is taken as the
minimum match cost across frames in the clip. Fig. 16 shows
that the top matching clips have the correct class, yielding
high performance precision recall curves for 8 of 10 classes;
the FJump and FHop classes are not distinguished well by
our detector, but that is because they are visually extremely
similar. The equal precision-recall point across the data set is
90 percent. Excluding the FJump and FHop categories, the
equal PR point is at 95 percent. Fig. 17 shows the results of
the proposed method for the more challenging KTH action
data set, which contains 599 video clips and 6 actions. The
sequence contains camera motions that degrade the result
mildly. Using a single template, we achieve about 70 percent
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Fig. 16. Detecting actions in the video data set of Blank et al. [28]. The
data set consists of 93 single action video clips for 10 actions. The
10 actions are running (Run), walking (Walk), side stepping (Side),
jumping in place (VJump), waving one arm (Wave1), waving two arms
(Wave2), forward jumping (FJump), forward hopping (FHop), jumping
jack (JJump), and bending (Bend). We use a single action template for
each action class. Graphs (a)-(j) show, for each action, all 92 clips
(template clip excluded) sorted by match score when matched against
that action template; the y-axis places each clip into its ground truth
category. Most of the same category target clips (red dots) are ranked
first, which is the goal. Graphs (k)-(t) show the corresponding precision
recall (PR) curves for the 10 actions. We achieve high precision and recall
for 8 of 10 actions; the FJump and FHop actions are extremely similar
visually, and panels (g), (h) show that they get confused with each other.
(a) Run. (b) Walk. (c) Side. (d) VJump. (e) Wave1. (f) Wave2. (g) FJump.
(h) FHop. (i) Jdump. (j) Bend. (k) Run. (I) Walk. (m) Side. (n) VJump.
(o) Wave1. (p) Wave2. (q) FJump. (r) FHop. (s) JJump. (t) Bend.

detection rate. This result is encouraging considering that
we only use one exemplar from each action class.

4.2 Object Matching

Another natural application of the proposed invariant
matching scheme is object matching, in which we would
like to find the correspondence of feature points on an
object in an exemplar image to the target object in other
images. The target object may have different rotations,
scales, and may be deformed relative to the template object.

In object matching, we first compute the matching cost for
each pair of template and target features. The proposed linear
method is then used to optimize the matching. Both invariant
and noninvariant matching costs can be used in the proposed
method. Even when the feature matching cost ¢ is invariant
to s or R or both, it is not necessary that the features be scale
and rotation invariant, e.g., SIFT [3]. For noninvariant
features, we can compute an invariant matching cost as
follows: For model point p and target point t, we compute
the features for t at multiple scales s and angles ¢ and
use the minimal distance between the features of t and p as
the matching cost ¢(p, t):

c(p,t) = mien distance(feature(p), feature(t;s,6)).  (7)
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Fig. 17. Action detection for the KTH data set. First row: ranks of video
clips (red dots indicate target clips). Second row: precision recall curves.
(a) Wave. (b) Box. (c) Clap. (d) Jog. (e) Walk. (f) Run. (g) Wave. (h) Box.
(i) Clap. (j) Jog. (k) Walk. (I) Run.

Fig. 18 shows an example of object matching using shape
context and the proposed linear method. The scale and
rotation invariant matching cost is computed as that used in
ground truth point set matching. The model graph is
generated by the Delaunay triangulation of the model points.
The target object is a locally deformed, globally scaled, and
rotated version of the template with 100 additional random
noise points. In this example, ICM fails to find the right
correspondences even with the correct scale and rotation
(Fig. 18j); our algorithm gets roughly the right scale and
orientation after the initial iteration (Fig. 18b). As we narrow
down the trust region from 200 x 200 to 10 x 10 (Figs. 18c,
18d, 18e, 18f, 18g, 18h, and 18i), the match is progressively
refined in scale, rotation, and correspondence. Fig. 19 shows
another example in which object matching uses color images
with SIFT features. The proposed method achieves near
perfect result after a few iterations.

We applied our method to shape matching, in which we
find similar shapes to an exemplar. Fig. 20 illustrates how
our method can handle rotation, scale changes, and large
deformations in matching edge points from a template to a
target. We further test our method using the Brown shape
data set [27], which contains 149 shapes. These shapes have
large rotations, scale changes, and deformations. We use
shape context as the feature, and the shape similarity is
computed by linearly combining the shape context differ-
ence and the shape deformation. Shape deformation is
defined as the ratio of feature point pairwise length changes
to the model point pairwise lengths after scale normal-
ization. We randomly select 50 percent of the edge points in
the template and target images. An exemplar shape is

)

Fig. 18. An example of matching a scaled and rotated deformable shape
with the proposed method. (a) A deformable fish shape template.
(b) Our initial match when the trust region is the entire image. (c)-(i) Our
results over iterations that shrink the trust regions. The algorithm
converges to the nearly perfect match. (j) Match found by ICM with
known scale and rotation.



Fig. 19. Matching bear using SIFT. (a) Template mesh. (b) Initial
matching. (c)-(i) Shrink trust regions to refine the matching. (j) The result

mesh on the target.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO.7, JULY 2011

Sl b & 19 € P s i ik I

Fig. 20. Shape matching sample results.

randomly chosen from each test category. Fig. 21 shows the

short list for each enquiry and Fig. 22 shows the precision

recall curves. Our method accurately detects similar shapes.
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Fig. 21. Shape matching short lists for the Brown shape data set [27]. The objects inside red boxes are the query objects. The blue meshes illustrate

the matching results.
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Fig. 22. The precision recall curves for shape matching on the Brown
shape data set (149 shapes) [27]. (a) Face. (b) Fish. (c) Glass. (d)
Greeble. (e) Hand. (f) Hare. (g) Pear. (h) Plane. (i) Rabbit. (j) Tool.

The equal PR point is above 95 percent on average. As
shown in Fig. 23, after adding 50 percent noise points, the
shape matching result only has mild degradation.

Fig. 24 shows matching results for the Caltech face data set
that contains 410 face images of 26 people. We construct a
template for each person and test how the proposed method
can be used to match other faces of the same person. We use
local color blocks as features. The test images are randomly
rotated and scaled in 0.5-2. The success matching rate is
86 percent. The proposed method performs well in finding
faces in clutter with large rotations and scale changes.

We further test our method on different videos: our own
videos (book, magazine, and bear) demonstrating scaling,
rotation, deformation, and occlusion, and YouTube videos
(butterfly, bee, and fish) of animals in their natural habitats.
Given a sample image for each video (Fig. 25 Row 1), we first
label the object region, and then build a model graph with
interest points and their neighboring connections through
Delaunay triangulation. Such a process involves only
selecting a region of interest; the feature points are randomly
selected and the model graph is constructed automatically.
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Fig. 23. The precision recall curves after adding 50 percent noise points
in shape matching on the Brown shape data set [27]. (a) Face. (b) Fish.
(c) Glass. (d) Greeble. (e) Hand. (f) Hare. (g) Pear. (h) Plane. (i) Rabbit.
(j) Tool.

We use SIFT points for all of the videos except the fish, for
which small image patches on randomly selected edge points
within the object region are used instead. Sample matching
results for the testing sequences are shown in Fig. 26. These
video sequences have a large range of scaling and rotation.
Our single frame-based matching algorithm requires no
initialization and can track a deformable object undergoing
large and complex motion over long video sequences (Fig. 25,
Row 3). The shapes of these long tracks are characteristic of
the object’s deformation and movement patterns, which are
useful for activity recognition.

We test the performance of the proposed method on
occlusion resistance with a hand in front of the book in the
book sequence. The proposed method is found to be
resistant to partial occlusions. Since an occluded model
point matches everywhere with a high cost, its target point
location is therefore mostly determined by spatial constraint
from its neighbors. The energy minimization will favor the
spatial constraint such that the overall spatial layout does
not change drastically. The proposed method therefore can
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Fig. 24. Matching faces in the Caltech face data set. The first row shows the sample results. The rest of the images are automatically cropped from
the original images based on the matching result. There are 26 people and 410 images in the data set. The detection rate is 86 percent.
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Fig. 25. Our LP is accurate and robust in matching objects in challenging real videos. Row 1: Images used to construct object templates from the
Delaunay triangulation of detected interest points. Row 2: Sample results of the proposed method. Row 3: Point trajectories from the first (blue dots)
to the last frame (red dots). The sequences involve scaling and rotation (book and bear), complex local warping (magazine and butterfly), and

segments of smooth movement (bee and fish).
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Fig. 26. Sample matching results. These objects all have large scaling and rotation. In particular, book could be occluded, magazine has large
warping, bear is textureless, butterfly flaps wings, bee is striated and circling in depth, and fish has weakly distinguishable features.
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video book | magazine | bear | butterfly | bee | fish
#frames | 856 601 601 | 771 101 | 131
#model | 151 409 235 124 | 206 | 130
f#target [2143| 1724 |1683| 1405 [1029|7316
time 1.6 11 2.2 1 2 |09
accuracy |99% | 97% |88% | 95% |79% |95%

Fig. 27. Performance statistics of our LP method on real videos. The five
rows give the total number of frames, the number of model points, the
average number of target points per frame, the typical running time
measured by the number of seconds that one LP iteration takes on a
2.8 GHz PC, and the accuracy measured by the detection rate over the
entire video.

correctly hallucinate the mesh on the occluded part of the
target object. Our deformable model can also deal with the
significant warping of the magazine as shown on the second
row of Fig. 26. It is also robust to weak local SIFT features
and robustly matches the textureless furry toy bear.

The last three examples in Fig. 26 are YouTube videos of
animals moving naturally in their habitats. The image
quality is low due to heavy compression. In addition, we
test matching performance on large deformations with
wing flapping of the butterfly, on appearance with
indistinguishable texture features with the bee and the fish,
and on large viewpoint changes with the out-of-plane
rotation of the bee.

The results in Fig. 27 show that our LP solution is
accurate and robust in face of all these challenges. The
running time is largely dependent on the number of model
points, and insensitive to the number of target points. The
complexity of the LP is roughly O(n?), where n is the
number of model points and p is between two and three.
For problems with about 100 model points, the running
time for the LP takes about 1 second; when the number of
model points is 400, the running time of the LP goes up to
about 11 seconds. The detection rate is largely dependent on
the distinctiveness of features that allows the objective
function to tell model points apart from each other: It is
higher than 95 percent for the book, magazine, butterfly,
and fish, lower for the textureless bear, and lowest for
the striated bee. Matching the tropical fish is a challenge
because there are few distinctive SIFT features. We choose
to detect edges instead to locate target points, and then
use small image patches as their features. The feature
matching cost is defined as the minimum color block
euclidean distance at different rotations, which is roughly
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Fig. 28. Comparison with RANSAC. The first two rows show the result of
RANSAC; the last two rows show the result of the proposed method.
RANSAC has 66 percent detection rate comparing with the 88 percent
detection rate of the proposed method.

Fig. 29. Comparison of graph matching [33] and TPS matching [20] with
the proposed method on the bear sequence. The first row shows the
result of graph matching, the second row shows the result of TPS
matching, and the third row shows the result of the proposed method.
The first image in each row shows the template image with the template
mesh overlaid on the top.

scale invariant for these stripes. Our method works well,
even with such crude features, considering the large
changes in scale, rotation, and color. This example also
demonstrates that our method is versatile and robust with
various features and matching cost functions.

We have compared the result of the proposed method
with those of RANSAC, graph matching [33] and TPS
matching [20] in the point data set experiments. We have
shown that the proposed method outperforms these
schemes in the ground truth tests. Our method also
performs better in real image matching. Fig. 28 shows how
the proposed method improves the result over RANSAC for
the bear sequence. In this experiment, RANSAC exhaus-
tively samples the local match pairs and therefore it is the
best result that RANSAC can achieve. Due to weak features
on the target object, RANSAC often loses the target. The
results of spectral graph matching and TPS matching are
shown in Fig. 29. For the spectral graph method, because of
its high time-space complexity, we have to use a higher SIFT
threshold to reduce the number of model points. The TPS
method uses the same zero threshold as the proposed
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Fig. 30. Our LP method (black bar) has a much higher detection rate
than ICM (white bar) yet requires a fraction of the running time.
(a) Detection rate in a video. (b) Running time ratio of the proposed
method to ICM.
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Fig. 31. Image matching results of the proposed method on objects with
large deformations, rotations, and scale changes. The first images at
row 1 and row 3 are the template images. The flyer images are sampled
from 524 matched images; the sock images are sampled from
256 matched images.

method in detecting SIFT features. The spectral graph
method and the TPS method are not able to match the
target in the bear sequence due to the weak features and
strong clutter. The proposed method works much better. It is
also much faster than the spectral graph and TPS methods.

We further benchmark the efficiency of the proposed
method. We use ICM, a simple greedy scheme, as a reference
method. To apply ICM to these real videos, with no ground
truth for scale and rotation available, we have to employ
exhaustive search for s (seven scales with step 0.25 from 0.5 to
2) and R (every 30°). Since ICM is rather efficient, its
performance is an indicator of the complexity of the matching
problem. Our LP solution greatly outperforms ICM in terms
of robustness (Fig. 30a) and efficiency (Fig. 30b) of matching
all the sequences.

Fig. 31 shows our results on more challenging video
sequences with large object deformation and in-plane/out-
of-plane object rotations. Despite these challenges, our
method reliably matches the target object.

5 SUMMARY

Scale and rotation invariant object matching is generally an
NP hard problem. We develop a linear solution with
computational complexity insensitive to the number of target
points, making it suitable for large scale matching problems.

Our results on both synthetic and real data demonstrate
the accuracy, robustness, and efficiency of our method. It
can be directly used to track an object with large shape
deformations and geometrical transformations, find actions
in clutter, and may be applied to object and activity
recognition.
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