Structural Correspondence as a Contour Grouping Problem

Elena Bernardis

Department of Computer and Information Science GRASP Laboratory University of Pennsylvania

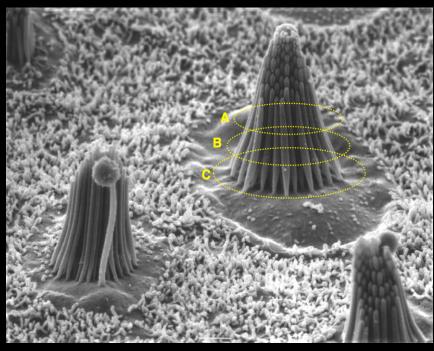
Stella X. Yu

Department of Computer Science Boston College

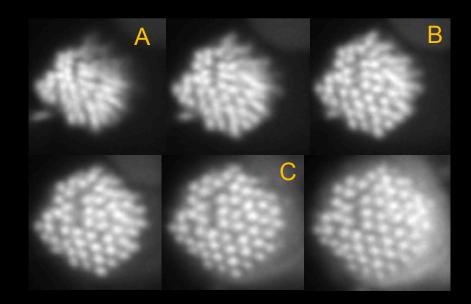
Mathematical Methods in Biomedical Image Analysis (MMBIA)

June 14th 2010

Extracting Tubular Structures: Finding Correspondence throughout Image Stacks



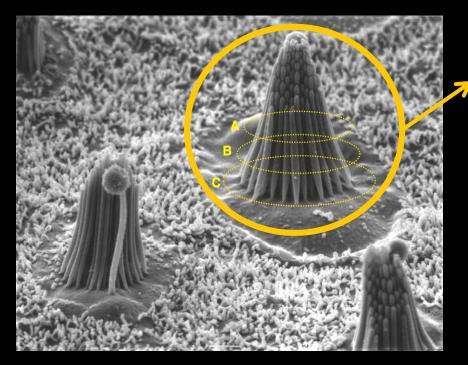
Haircell bundles of the inner ear



Stereocilia cross- sections

[image courtesy of M. Pathak and D. Corey at Harvard]

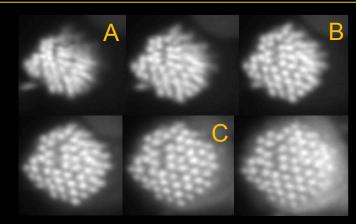
Extracting Tubular Structures



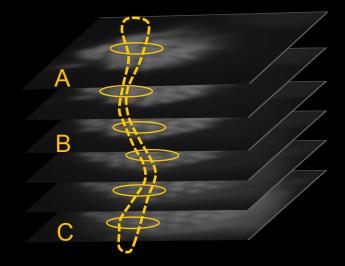
Organ Pipe Structure:

- varying lengths
- varying cross-section shapes

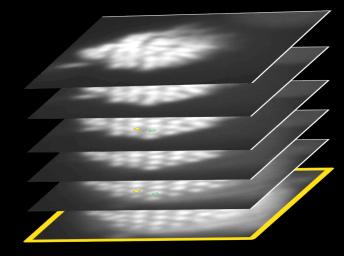
(cells shifting & shrinking)

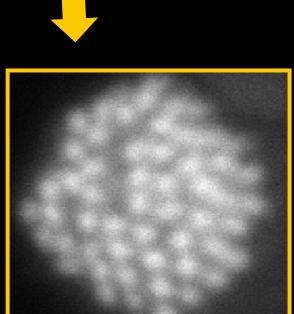


- 3D volumetric segmentation
 - naturally describes 3D tubes
 - implicit correspondence
 - pixel to pixel correspondence

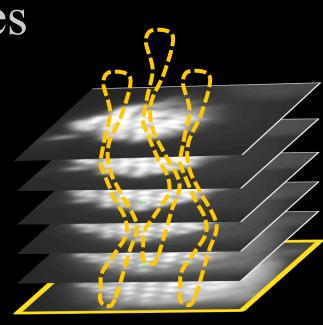


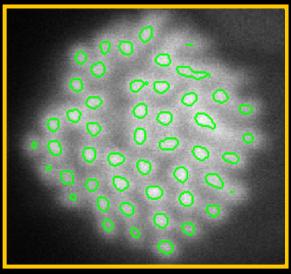
- 3D volumetric segmentation
 - naturally describes 3D tubes
 - implicit correspondence
 - pixel to pixel correspondence
- 2D segmentation + correspondence
 - explicit correspondence
 - segment to segment correspondence
 - tubes of different lengths





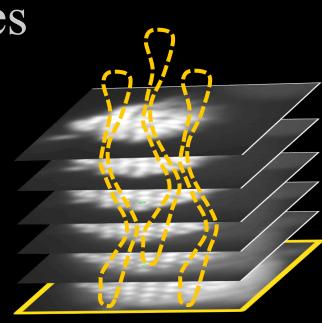
- 3D volumetric segmentation
 - naturally describes 3D tubes
 - implicit correspondence
 - pixel to pixel correspondence
- 2D segmentation + correspondence
 - explicit correspondence
 - segment to segment correspondence
 - tubes of different lengths

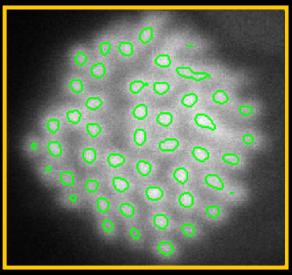




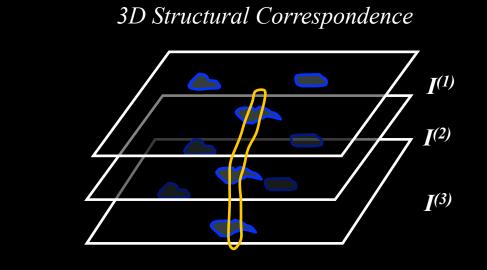
- 3D volumetric segmentation
 - naturally describes 3D tubes
 - implicit correspondence
 - pixel to pixel correspondence

- explicit correspondence
- segment to segment correspondence
- tubes of different lengths

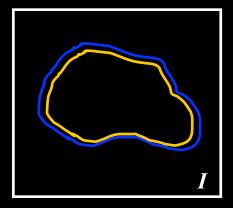




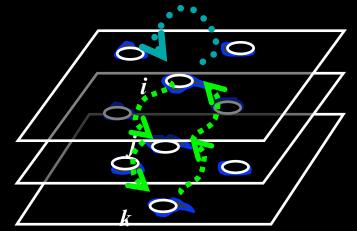
3D Correspondence as 2D Contour Grouping

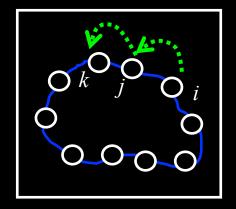


Contour Grouping



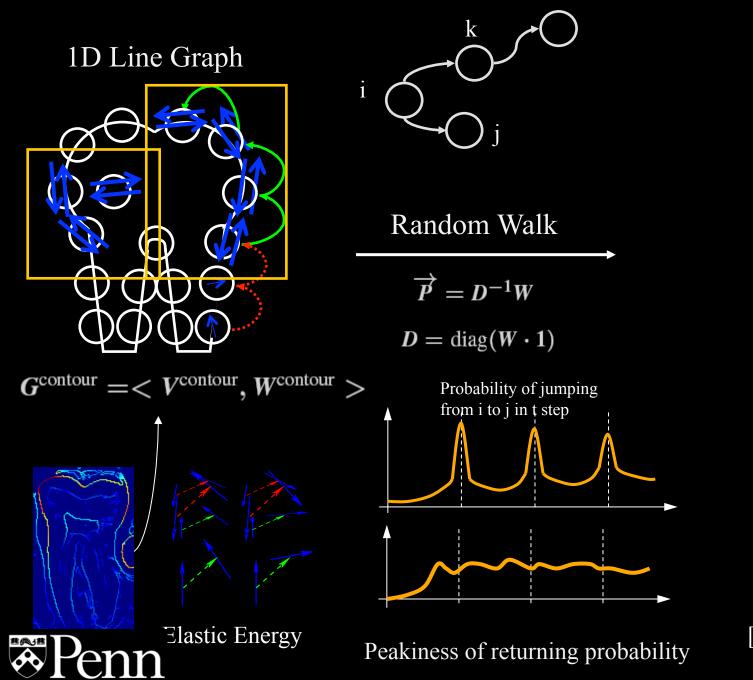
Image(s)



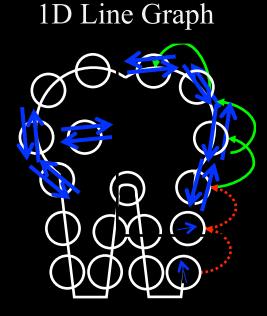


Graph Setup

'enn

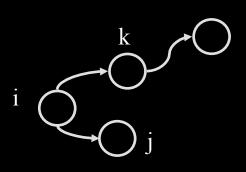


[Zhu et al. `07]



 $G^{\text{contour}} = \langle V^{\text{contour}}, W^{\text{contour}} \rangle$

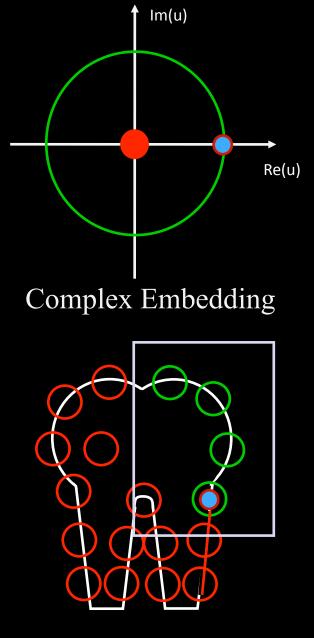
stic Energy



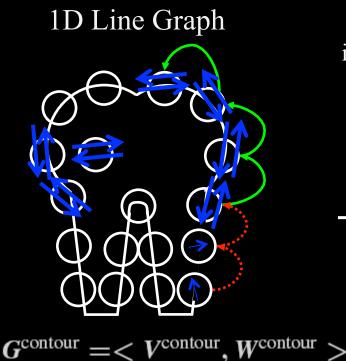
Random Walk

 $\overrightarrow{P} = D^{-1}W$

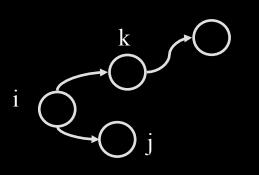
 $D = \operatorname{diag}(W \cdot 1)$



Contours [Zhu et al. `07]



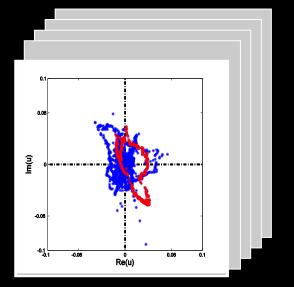
Elastic Energy



Random Walk

$$\overrightarrow{P} = D^{-1}W$$

 $D = \operatorname{diag}(W \cdot 1)$

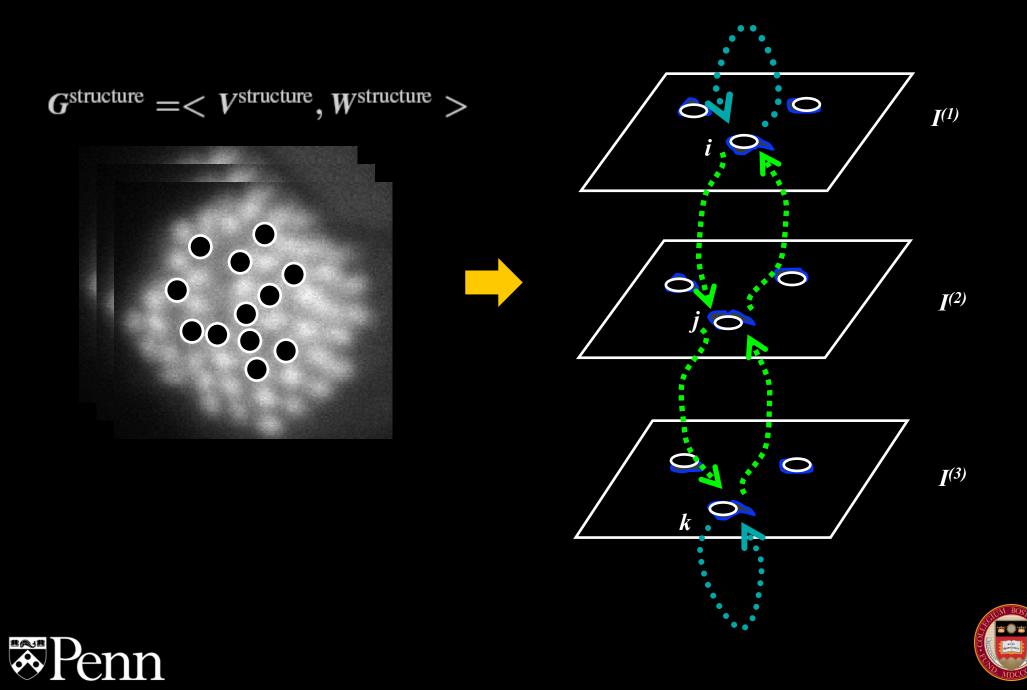


Complex Embedding Discretization

Contours

R

[Zhu et al. `07]



 $G^{\text{structure}} = \langle V^{\text{structure}}, W^{\text{structure}} \rangle$

$$w_{i \to j} = \begin{cases} \xi(i,j) + (\psi_{i \to j}) & i \neq j \\ \xi(i,i) + i & i = j = 1, n \\ \xi(i,i) * 0.1 + i & i = j = 2, \dots, n-1 \end{cases}$$

Bending:

 $\xi(i,j) = \exp\left(-|d_j - d_i|/\sigma\right)$

 d_i , d_j positions of node *i* and *j*

 $G^{\text{structure}} = \langle V^{\text{structure}}, W^{\text{structure}} \rangle$

$$w_{i \to j} = \begin{cases} \xi(i,j) + (\psi_{i \to j}) & i \neq j \\ \xi(i,i) + i & i = j = 1, n \\ \xi(i,i) &* 0.1 + i & i = j = 2, \dots, n-1 \end{cases}$$

Bending:

 $\xi(i,j) = \exp\left(-|d_j - d_i|/\sigma\right)$

 d_i , d_j positions of node *i* and *j*

 $G^{\text{structure}} = \langle V^{\text{structure}}, W^{\text{structure}} \rangle$

$$w_{i \to j} = \begin{cases} \xi(i,j) + \psi_{i \to j} \\ \xi(i,i) + 1 & i \neq j \\ \xi(i,i) + 1 & i = j = 1, n \\ \xi(i,i) * 0.1 + 1 & i = j = 2, \dots, n-1 \end{cases}$$

Bending:

 $\xi(i,j) = \exp\left(-|d_j - d_i|/\sigma\right)$

 d_i , d_j positions of node *i* and *j*

Jumping between stacks:

 $\psi_{i \rightarrow j} = t - s$ $i \in I^{(s)}, j \in I^{(t)}$ $s, t \in 1, \dots, n$

 ψ number steps taken

$$G^{\text{structure}} = \langle V^{\text{structure}}, W^{\text{structure}} \rangle$$
returning link
$$w_{i \to j} = \begin{cases} \frac{\xi(i,j) + \psi_{i \to j}}{\xi(i,i) + 1} & i \neq j \\ \frac{\xi(i,i) + 1}{\xi(i,i) * 0.1 + 1} & i = j = 1, n \\ i = j = 2, \dots, n - 1 \end{cases}$$
Bending:
$$\xi(i,j) = \exp(-|d_j - d_i| / \sigma)$$

$$d_i, d_j \text{ positions of node } i \text{ and } j$$

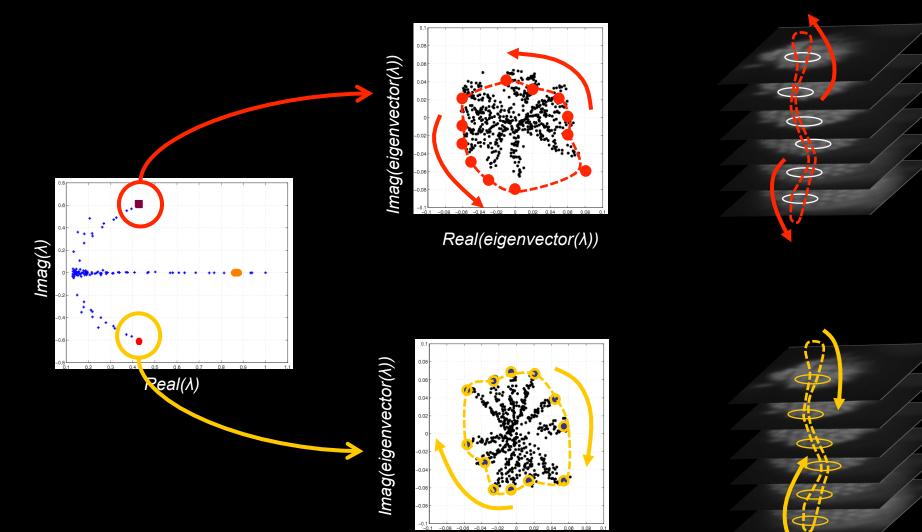
$$\psi_{i \to j} = t - s$$

$$i \in I^{(s)}, j \in I^{(t)}$$

$$s, t \in 1, \dots, n$$

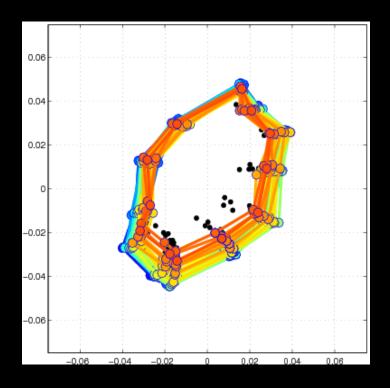
$$\psi \text{ number steps taken}$$

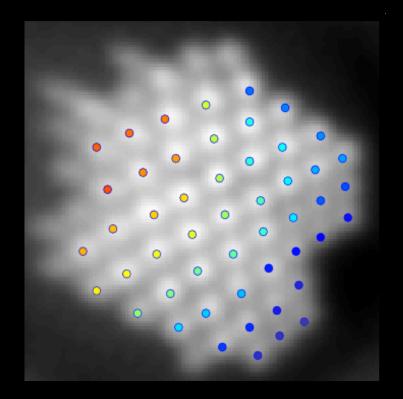
Structural Correspondence Embedding Space



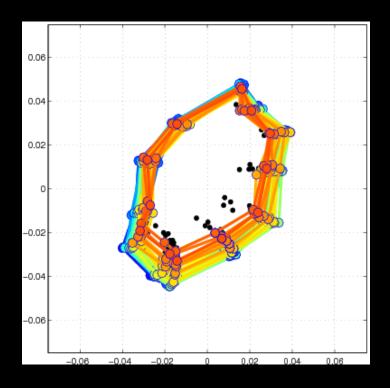
Real(eigenvector(λ))

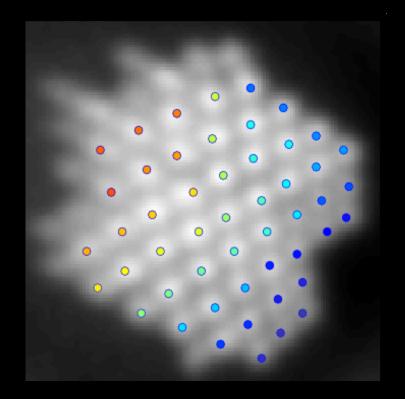
complex eigenvector



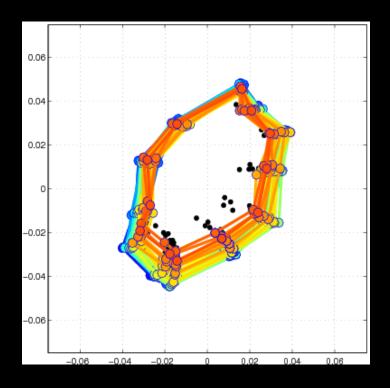


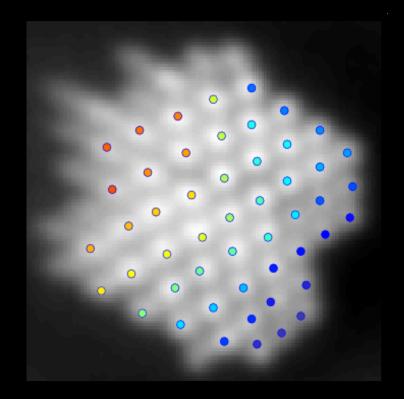
complex eigenvector



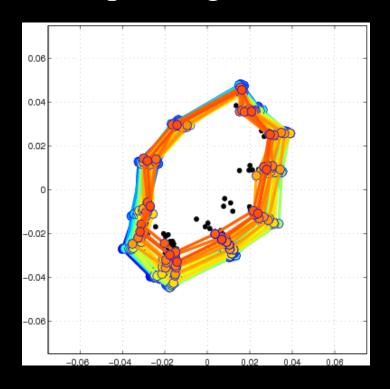


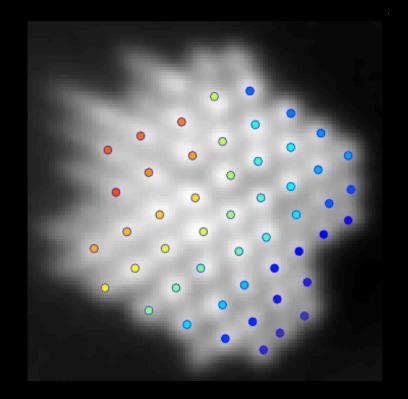
complex eigenvector



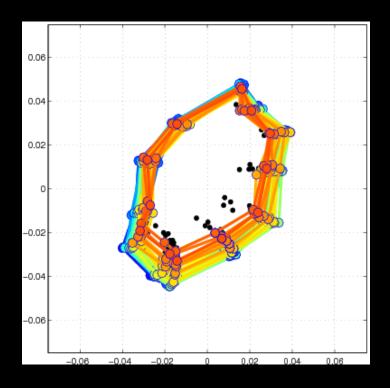


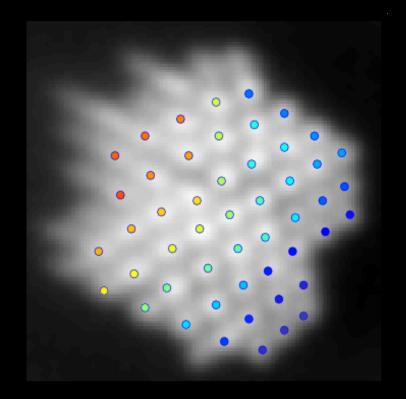
complex eigenvector



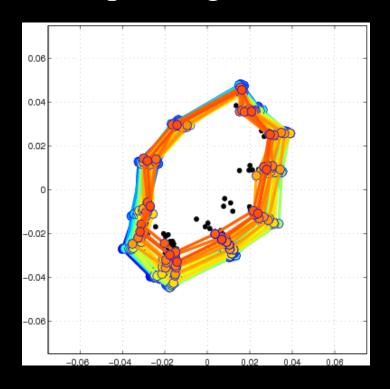


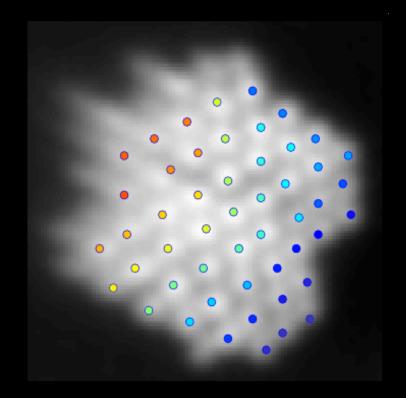
complex eigenvector



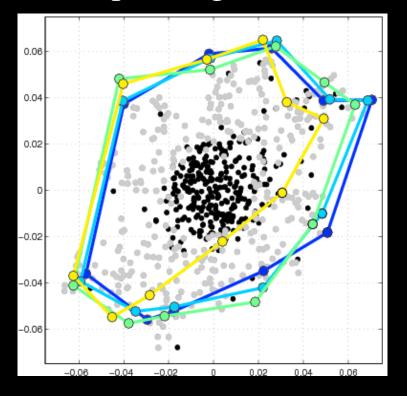


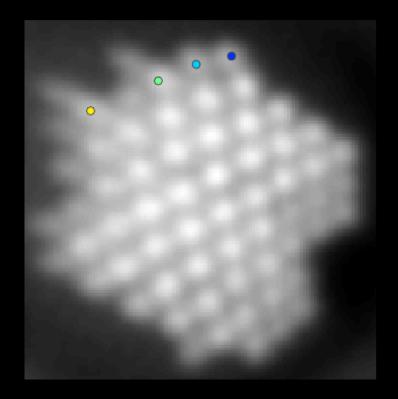
complex eigenvector





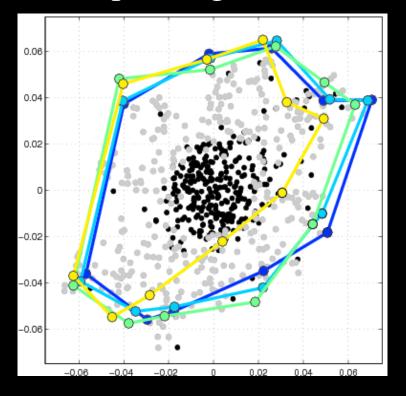
complex eigenvector

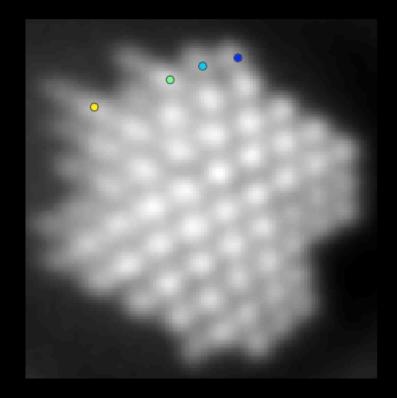




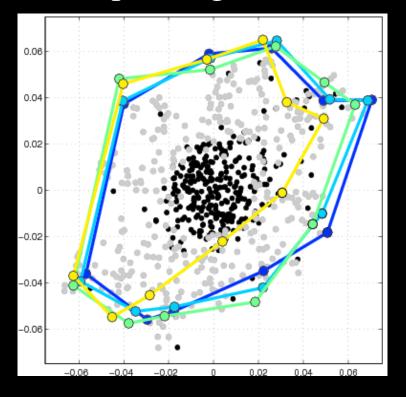
Structural Correspondence Embedding Space

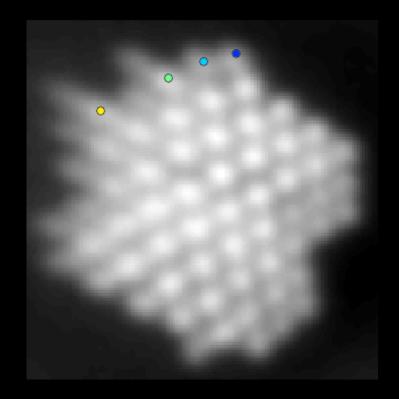
complex eigenvector



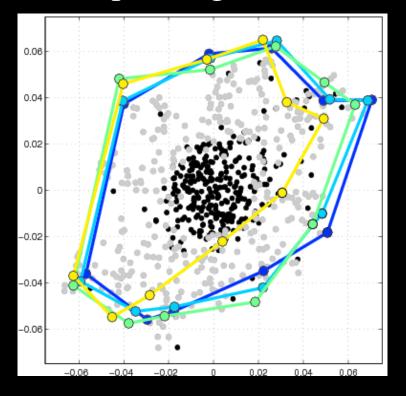


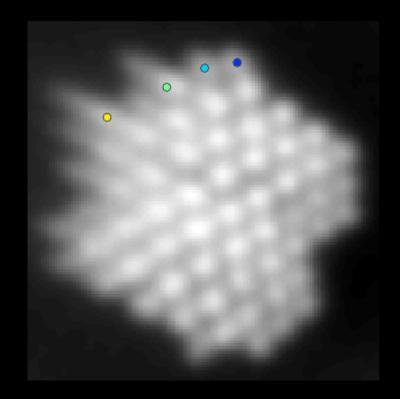
complex eigenvector



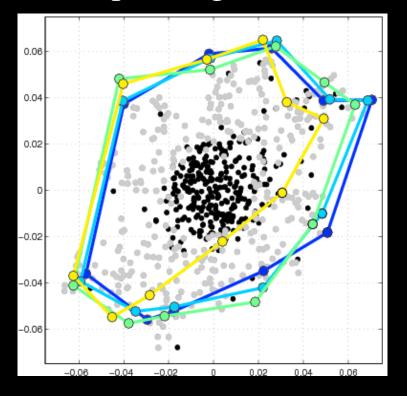


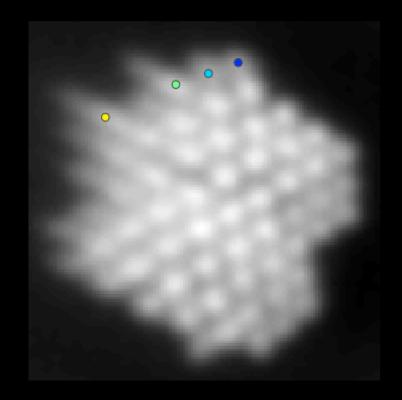
complex eigenvector



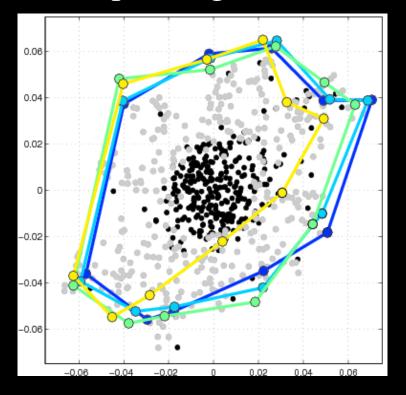


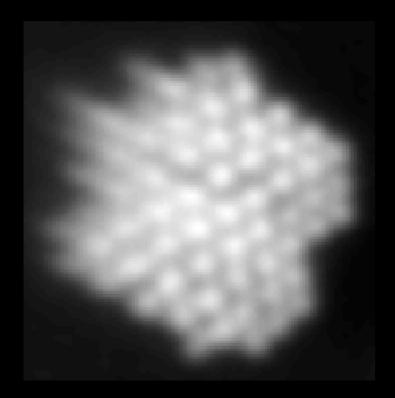
complex eigenvector



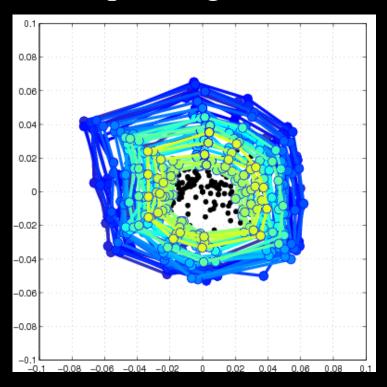


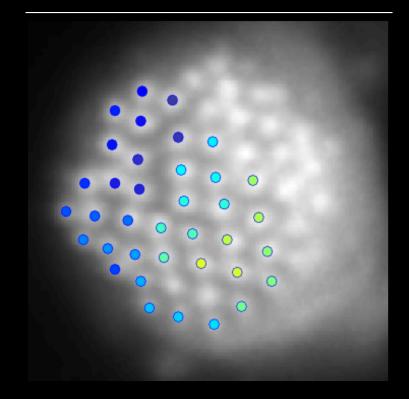
complex eigenvector



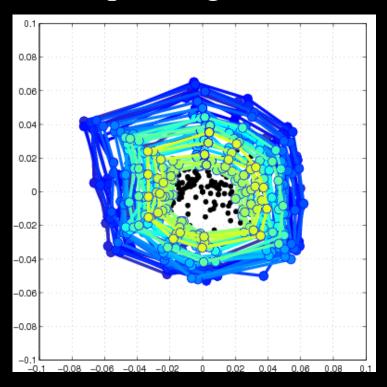


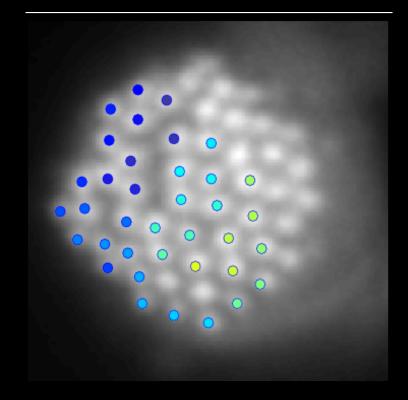
complex eigenvector



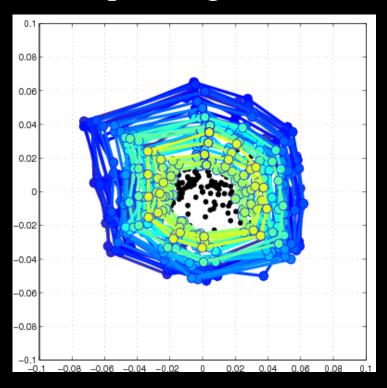


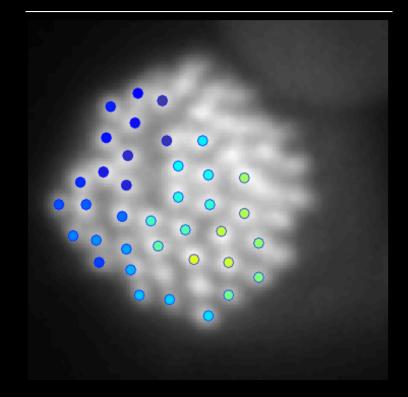
complex eigenvector



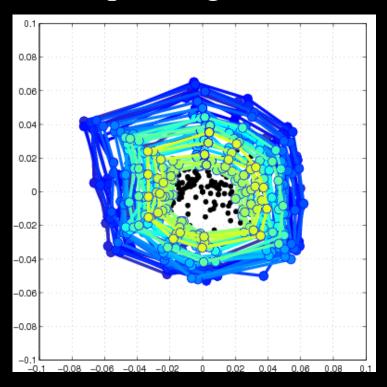


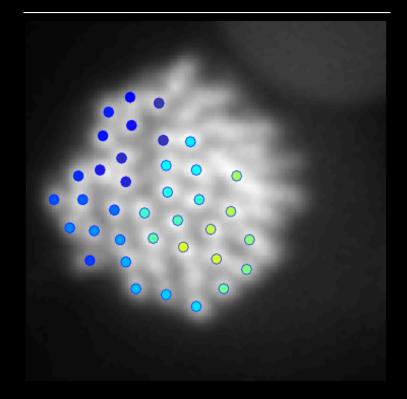
complex eigenvector



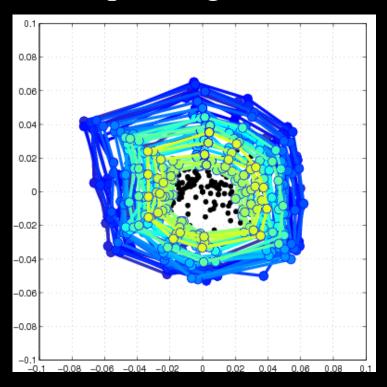


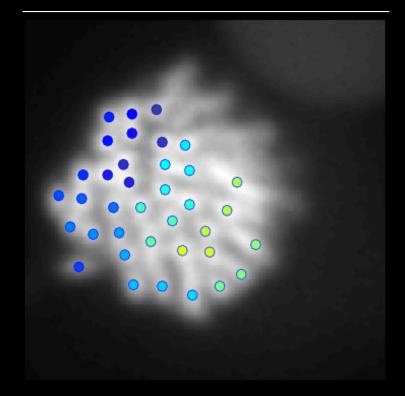
complex eigenvector



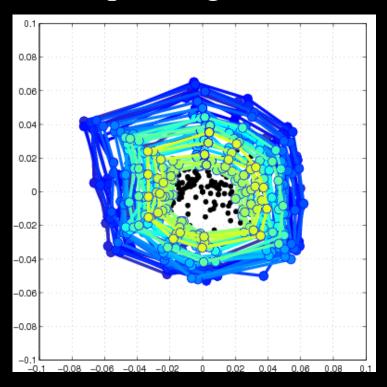


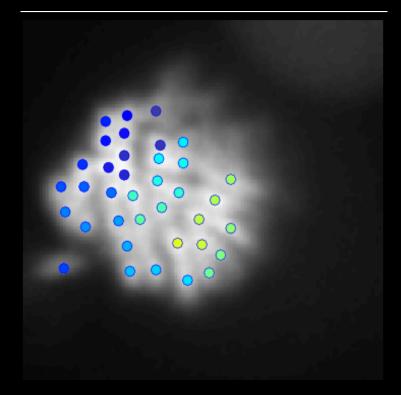
complex eigenvector



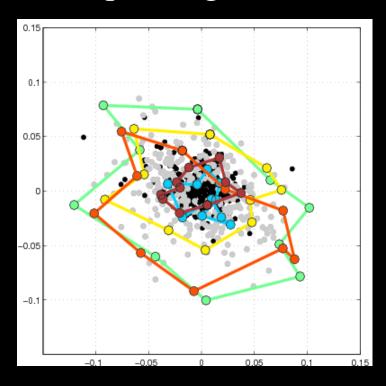


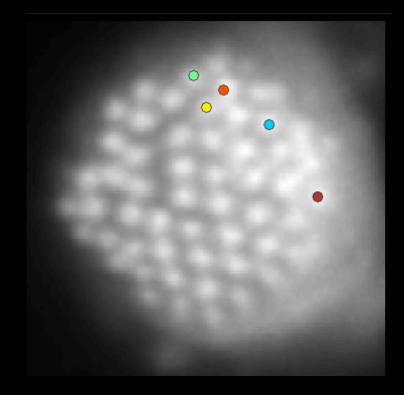
complex eigenvector



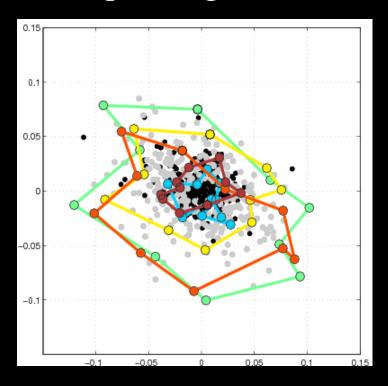


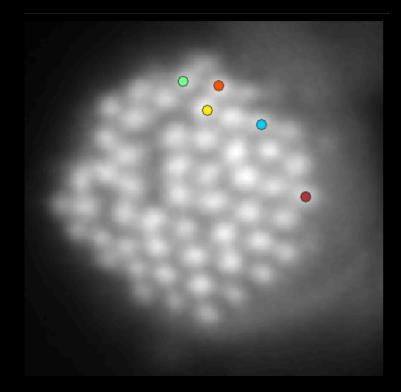
complex eigenvector



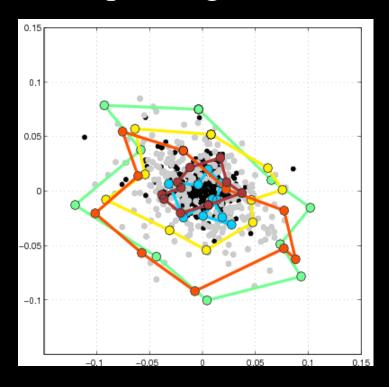


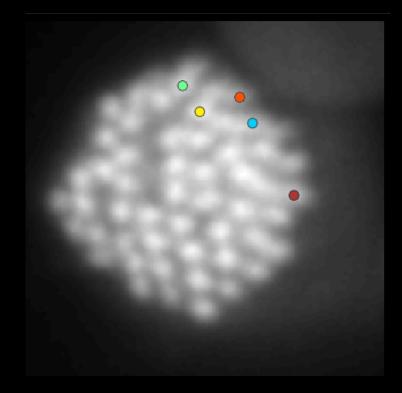
complex eigenvector



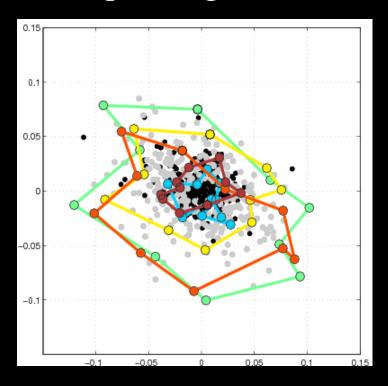


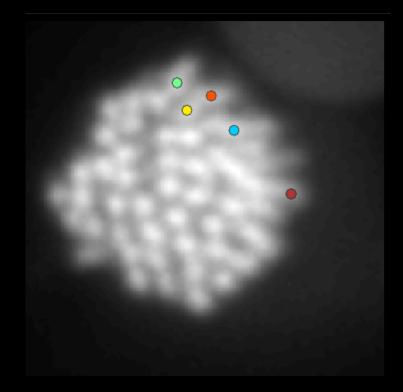
complex eigenvector



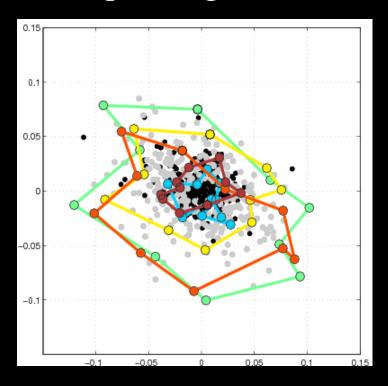


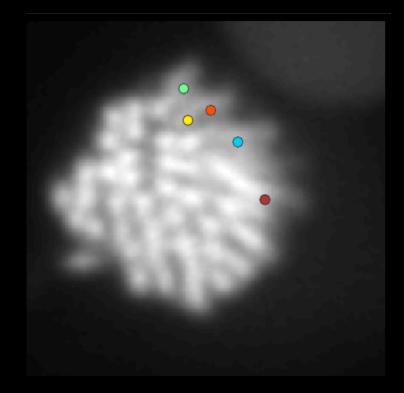
complex eigenvector





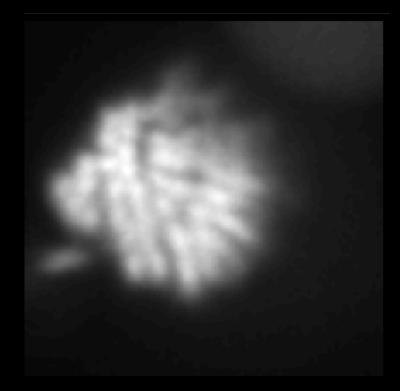
complex eigenvector





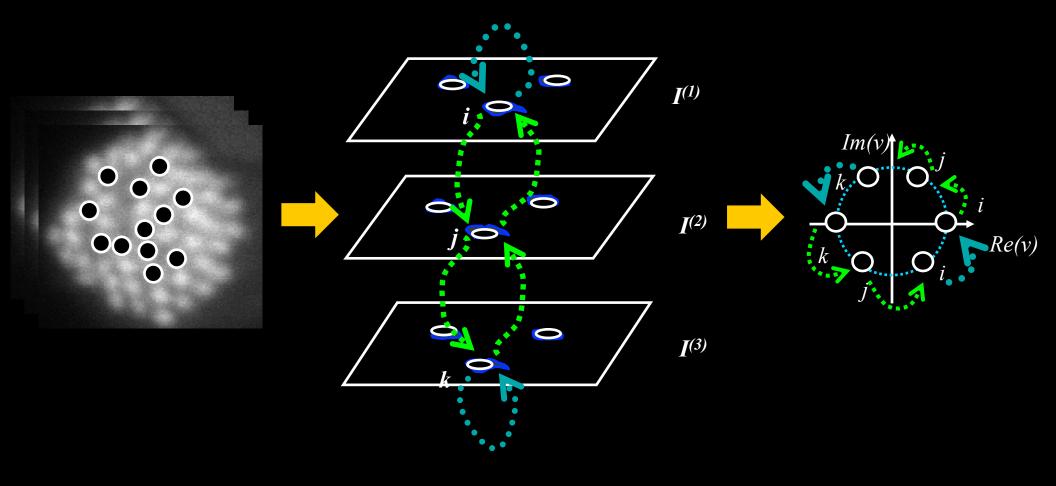
complex eigenvector





Spectral Graph Partitioning Framework for Structural Correspondences

Different contour lengths encoded in eigenvectors of different magnitude



In pratice, how do we find the nodes?

[CVPR 2010]

