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Abstract
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We investigate the utility of human performance data on

indoor-outdoor scene categorization in improving the gen-

eralization performance of a machine indoor-outdoor clas-

sifier. On 50 indoor and 50 outdoor scenes, the human cat-

egorization accuracies are obtained for these stimuli ren-

dered as either real images or line drawings. We study two

types of features, image gist and edge gist, which are the

scene gist features extracted from the original image and

the edge map of the image respectively. Using human accu-

racies on real images and line drawings as constraints on

these two sets of features in training a max-margin classi-

fier, we observe 4% improvement in classifying never seen

10000 indoor and 10000 outdoor images. Our experiments

also reveal that edge gist characterizes indoor scenes far

better than image gist. Therefore, not only human labeling

is necessary for machine classification, but how humans err

on the labeling is instrumental for learning better general-

izing features and machine classifiers.

1. Introduction

Machine recognition tasks are often cast as classification

problems: given a set of training exemplars for which cate-

gorical labels have been provided by humans, the goal is to

learn a classifier which not only performs well on the train-

ing data but on unseen data as well.

One of the biggest challenge in machine classification is

the ability to generalize, that is, the ability to achieve good

performance on test data which are significantly different

from the training data. There are three main approaches:

employing ever larger training datasets, incorporating more

priors, and utilizing properties inherent in the test data.

The first type of approaches expands the training data set

so that it has more potential to contain representatives for all

possible types of images, allowing a classifier to interpolate

rather than generalize well on new test data ([5, 12, 15]).

The ubiquity of internet and emergence of frameworks such

as the Amazon Mechanical Turk have made fast and cheap

data collection and annotation possible.

The second type of approaches aims to use previously

learned knowledge to improve performance on novel tasks,

to learn properties of one object that can be used to make

inferences about other objects, to acquire and organize in-

formation autonomously. They can be effective in complex

classification tasks with few training examples ([8, 3]).

The third type of approaches focuses on identifying data

properties that can help constructing good classifiers with-

out requiring volumes of labeled data. Semi-supervised

learning ([4]) aims to reduces the number of labeled sam-

ples required by taking into account the separability the un-

labeled data might exhibit. Active learning ([13]) aims to

select intelligently the most informative examples to label.

We propose a fourth approach, using human perfor-

mance data on a visual task to construct a more general-

izing machine classifier. Our idea is that, while the human

labeling of the training data indicates the outcome of human

classification, the human performance on a visual task with

controlled stimulus presentation gives out clues to the pro-

cess of human classification. Since the human visual system

utilizes features and decisions that work for general images,

its performance data provide additional constraints on what

features have better generalization potentials.

In this paper, we focus on the usefulness of human ac-

curacies obtained on an indoors vs. outdoors task in which

the scenes are presented as grayscale images or detailed line

drawings over an increasing exposure time. There are only

50 indoor and 50 outdoor scenes. These 100 images be-

come our training dataset for machine classification. We

incorporate human accuracy information in a max-margin

framework in conjunction with two types of features: im-

age gist and edge gist, which are the scene gist features ex-

tracted from the original image and the edge map of the

image. We test the classifier on a large number of unseen

images, 10000 indoors and 10000 outdoors. We observe

that human performance can boost the performance of the
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(a) 75% → 100% (b) 90% → 100% (c) 95% → 100% (d) 60% → 74%

(e) 80% → 100% (f) 100% → 100% (g) 95% → 100% (h) 80% → 89%

Figure 1. Example stimuli employed in our scene categorization experiment. The stimuli were displayed in two rendering modes: grayscale

images and detailed line drawings. The percentages under the images indicate the categorization accuracy when the stimulus is displayed

16ms and 32ms. That is, a% → b% means that the stimulus was categorized a% and b% when displayed 16ms and 32ms respectively.

Line drawings do not contain any shading cues and all the edges are of the same intensity.

classifier by 4% and edge gist characterizes indoor scenes

better than image gist.

We will present our human vision experiment in Section

2, max-margin machine classifier in Section 3, features and

parameters in Section 4, experimental evaluation in Section

5, and conclusions in Section 6. Our work shows that not

only human labeling is necessary for machine classification,

but how humans err on the labeling is instrumental for learn-

ing a better generalizing machine classifier.

2. Indoor-Outdoor Categorization by Humans

We conducted an ultra-rapid scene categorization exper-

iment to investigate what features are employed by the hu-

man visual system in indoor-outdoor classification [16].

Our stimuli consisted of 50 indoor and 50 outdoor im-

ages, collected from the internet with the criterion that each

image has a relative large field of view and typical scene

complexity. Our artist created detailed line drawings from

these images using a tablet in a tracing paper mode. The

image and its corresponding line drawing are spatially in

correspondence yet the details may be enhanced or omitted

according to artistic choices. There were no calligraphic

lines for depicting local shading (Fig. 1).

Each experimental trial began with a 2-second display

of a blank screen. A fixation dot of radius 0.5◦ was sub-

sequently shown at the center of the display for 1 second,

prompting the subject to gaze at the center. The stimulus,

extended 8◦ horizontally, was presented briefly for either 16

or 32 ms. A choice screen subsequently appeared with the

words indoor on the left and outdoor on the right. The sub-

ject was required to respond as soon as possible by pressing

a designated left of right key. A blank image indicated the

start of the next trial. The grayscale images and line draw-

ings were run in two separate blocks of 100 trials each, with

one image per trial. The trials were completely randomized

for each subject, and the block ordering was also random-

ized and balanced across subjects.

There were 31 participants in the experiment. The aver-

age accuracies over all subjects and stimuli were:

average accuracy 16 ms 32 ms

grayscale images 90.6% 97.8%

line drawings 89.5% 93.0%

These results suggest that highly discriminative features can

be extracted from line drawings as well as grayscale images.

Shading and texture cues present in real images and absent

in line drawing counterparts have an advantage with more

stimulus exposure.

More interestingly, different rendering modes lead to dif-

ferent performance for indoor and outdoor scenes. Fig. 2

shows the distribution of accuracies among 100 stimuli.

While additional exposure time helps improve the accu-

racy of almost all grayscale images, it may not help some

line drawings. Fig. 1 shows example stimuli and the corre-

sponding categorization accuracies. Grayscale images are

preferable for uncluttered scenes (Fig. 1b,d,f,h), whereas
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Figure 2. Histograms of per-stimulus average accuracies for

grayscale and line drawing rendering modes. Additional exposure

time is especially beneficial for grayscale images.

line drawings are preferable when illumination conditions

create strong edges that confuse the subjects (Fig. 1a,c,e,g).

3. Max-margin Formulation

Support Vector Machines (SVM’s, [2]) are some of the

most effective classification methods. Their goal is to com-

pute the decision boundary that minimizes the misclassifi-

cations and is maximally distanced from the training exam-

ples (Fig. 3(a)). It is formulated as a constraint satisfaction

program. If xi is the feature vector for the i-th image and

yi ∈ {1,−1} its categorical label, then the separating hy-

perplane (w, b) is given by:

min
∑

i ξi + λ
2
||w||

s.t.
yi (xi · w + b) ≥ 1 − ξi

ξi ≥ 0

(1)

The slack variables ξi relax the constraints when the data

are not linearly separable. The norm ||w|| is usually chosen

as L2 or L1. In the latter case the above formulation results

in a linear program and it is known to encourage sparsity

of features [1, 9]. The decision boundary is determined by

certain points in its vicinity, referred to as support vectors.

Informally speaking, the support vectors define the area in

the feature space with the hardest to categorize points.

Ultimately the success of a classifier is determined by

how it performs on unseen data. The generalization perfor-

mance can be compromised if the training set is small, if it

(a) SVM (b) DSVM

Figure 3. Solid circles and squares denote the training data from

two classes. Solid line indicates the decision boundary computed.

(a) SVM minimizes the number of misclassifications, when the

points cannot be linearly separated. Misclassifications occurring

far from the boundary are penalized more. (b) DSVM addition-

ally penalizes points which do not fall behind pre-specified hyper-

planes (dashed lines); it constraints the training set configuration.

contains non-representative examples, or if it is significantly

different from the test set. Our goal is to employ the human

accuracies so that the resulting classifier has improved gen-

eralization performance.

The average accuracy a scene is categorized by sub-

jects provides a measure of the complexity of a scene. In

the ideal human feature space, scenes very accurately cat-

egorized should be far from the human decision boundary,

whereas scenes not so accurately categorized close it. In

other words, human accuracies can provide “prior” infor-

mation regarding the support vectors of a human SVM clas-

sifier. Incorporation of such information can result in im-

proved generalization performance.

We interpret human accuracies as a form of distance

from an ideal decision boundary and develop the following

so-called Distance SVM (DSVM):

min
∑

i ξi + λ
2
||w||

s.t.
yi (xi · w + b) ≥ αi − ξi

ξi ≥ 0

(2)

Whereas SVM penalizes only misclassified points, DSVM

additionally penalizes points whose algebraic distance from

the boundary is more than the human-derived one. As such

it imposes constraints on the configuration of the points be-

longing to the same class (Fig. 3(b)).

Our formulation is similar in form but different in goal

to previously introduced SVM formulations. Support vec-

tor regression (SVR) [14] estimates the function that best

fits the data αi. However, it does not take into account the

discrete category of a data point and may impair the clas-

sification accuracy. Soft-SVM [7] interprets αi’s as uncer-

tainties regarding the class of data points. The objective

function is modified accordingly in order to focus more on

points with small uncertainty. In our case, there is no un-



certainty regarding the class of a data point and the human

accuracies affect only the constraints of the formulation not

the objective criterion.

4. Features and Parameters

For every training example, we compute the scene gist

features [10] on the real image and its edge map. We

call them image gist and edge gist features respectively.

Whereas image gist has been routinely used in scene cate-

gorization and image retrieval, edge gist is our new addition

to the family of holistic image representations. Our mo-

tivation for this type of features is the ability of humans to

very accurately categorize a scene based on its line drawing.

The gist features are defined using multiscale Gabor filters

as in [10]. In total, there are 512 features computed across 4

scales, 8 orientations and 16 image sites. Edge gist features

are computed in exactly the same routine but from the edge

map of the image found with the Canny edge detector.

Important parameters of DSVM are the human-induced

αi’s. Training exemplars with small αi’s will be encouraged

to become support vectors. Such exemplars will in turn fa-

vor features for which the margin is maximized. The intro-

duction of these parameters is advantageous if they express

the distance from the optimal decision boundary in a given

feature space. Although the feature space employed by hu-

mans is not known, the first features computed in the visual

cortex are edge orientations [6] akin to those produced by

Gabor filtering [10].

We will restrict ourselves to low-level features like

gist [10] and we will define the αi’s based on the accuracy

gain gi, i.e. the absolute difference between the categoriza-

tion accuracies at 16ms and 32ms. As the exposure time in-

creases, the computation of intermediate level features be-

comes more likely. Scenes categorized very accurately at

both 16ms and 32ms exposures are more likely to be accu-

rately characterized by low-level features.

Because the differences among subject’s accuracies are

very small we exponentiate the accuracy gains gi:

αi = eγ gi (3)

We refer to γ as gain enhancing parameter. The highest the

value of γ the more pronounced the effect of high accuracy

gain examples on the decision boundary, that is, complex

scenes difficult to be categorized by humans. For γ = 0 we

obtain the standard SVM formulation (Eqn. 1).

5. Experimental Evaluation

Our goal is two-fold: establish whether human accuracy

can improve the classification performance and investigate

the roles of image gist and edge gist features for indoor and

outdoor scene classification.

5.1. Training and Testing Data

The training set consisted of the 50 indoors and 50 out-

doors scenes used in our human vision experiment. Our test

set consisted of and exhaustive 10000 outdoor and 10000

indoor images. The outdoor images were selected from the

LabelMe database [12] so that they depicted urban scenes

with clearly visible layout. The indoor set was assembled

as follows: 8660 from the indoors database available online

[11], 340 from [17], and the remaining 1000 from Flickr.

The indoor images depicted various spaces (airport, kitchen,

bedroom, railway) for which the layout was clearly visibly

and no single object was the main focus of the image. The

sheer size of the datasets guarantees a large range of varia-

tion that would not be covered by our small training set.

5.2. Classification Results

We trained our DSVM method (Eqn. 2) using L1 norm

and γ values ranging from 0 to 7. The larger the values

of γ the more influenced is the decision boundary by the

human accuracies. For γ = 0 we obtain the original SVM

formulation 1. Two scenarios were employed: image gist

features in conjunction with the grayscale image accuracies

and edge gist features in conjunction with the line drawing

accuracies. The regularization parameter λ was set to 0.02

for all cases. Fig. 4 shows the classification results obtained

with respect to the gain enhancing parameter γ.

Edge gist features result in higher classification accuracy

especially for the indoor scenes. In this case, the gap be-

tween edge gist and image gist classification remains the

same, more than 10%, for all γ values. For the outdoor

scenes, the classification rate is higher for edge gist than

image gist features for γ < 4. For larger values of γ human

accuracies in conjunction with image gist features give the

best results.

Human performance data improve the classification rate

for the case of image gist features and grayscale image ac-

curacies. The classification accuracy increases monotoni-

cally with γ for both indoors and outdoors. The best perfor-

mance in achieved for γ = 6, where indoor categorization

improves by about 4% and outdoor by 3%.

For edge gist features and line drawing accuracies, the

classification rate increases with γ for indoor images but

decreases for the outdoor images. This could be because

the line drawings employed in the human vision experiment

contain different information than that in the edge maps ob-

tained by the Canny edge detector.

5.3. Image Gist vs. Edge Gist

Edge gist features are particularly beneficial for the in-

door class (Fig. 4). Indoor scenes consist of complex illu-

mination phenomena: natural lighting coming through win-

dows, artificial lighting from various sources, multiple sur-
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Figure 4. Classification accuracies for indoor and outdoor scenes when when image gist features are used in conjunction with the accuracies

obtained from the grayscale images and edge gist features used used in conjunction with line accuracies. The accuracies are plotted with

respect to the gain enhancing parameter γ. Edge gist features are more effective for classification especially for the indoor class. Human

accuracies from grayscale images improve the classification accuracy when image gist features are used; for the outdoor class they perform

better than edge gist features.

Figure 5. Indoor and outdoor images correctly classified when using edge gist features and incorrectly when using image gist features. The

indoor images contain complex illumination conditions and a lot of clutter. For the outdoor cases, edge detection may help enhance the

structure of the scene.

faces with different reflection properties. Further, they can

be very cluttered. Edge gist features may be more robust to

such drastic changes in appearance than the image gist ones

and result in improved classification rates.

5.4. Features Selected by SVM and DSVM

The improvement in classification when the image gist

is used in conjunction with human accuracies stems from

differences in the features selected by SVM and DSVM.

We visualize these features in Fig. 6 for γ = 6, where

the increase in accuracy is maximum. The features charac-

terizing the indoor (outdoor) scenes correspond to the posi-

tive (negative) decision boundary weights. The weights for

both indoor and outdoor classes were averaged over all im-

age sites and normalized to (0,1) (the output weights were

converted to positive). The length of the arrows in Fig. 6

is proportional to the corresponding weight, the direction

corresponds to the orientation of the Gabor filter and the

thickness of the line to the scale. From left to right, the

scale becomes more coarse.

Fig. 6 shows that while indoor scenes are categorized by

similar features by both SVM and DSVM, outdoor scenes

are categorized by finer features and more vertical orienta-

tions by DSVM. This limits the interference between the

coarse scales employed for the indoor scenes and the finer

ones employed for the outdoor scenes.
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SVM
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Figure 6. Features selected by SVM and DSVM for image gist features and γ = 6. The length of the arrows is proportional to the feature

weight. Bolder lines correspond to features in coarser scales (left to right). Indoor scenes are similarly characterized by both SVM and

DSVM. Outdoor scenes are characterized with finer scale features by DSVM than by SVM and more emphasis on the vertical directions.

indoors classified correctly by SVM incorrectly by DSVM

indoors classified correctly by DSVM incorrectly by SVM

outdoors classified correctly by SVM incorrectly by DSVM

outdoors classified correctly by DSVM incorrectly by SVM

Figure 7. Sample indoor and outdoor test scenes where the SVM and DSVM classifiers produce different results. DSVM favors fine and

vertical features for the outdoor class and as a result coarser features for the indoor class. Thus, DSVM can categorize more complex and

cluttered indoor scenes than SVM, whereas SVM selects diagonal features and works on outdoor images with these types of distortions.



Consequently, as shown in Fig. 7, DSVM can catego-

rize more cluttered indoor scenes than SVM, and it can ac-

curately categorize outdoor scenes with prominent vertical

directions.

6. Conclusions

We investigated the use of human performance data

in improving indoor-outdoor scene classification with two

types of features: image gist and edge gist.

Our experiments on very large datasets of indoor and

outdoor scenes showed that human accuracies obtained

from the categorization of grayscale images along with im-

age gist features result in improved classification perfor-

mance. Additionally, by a large margin, edge gist charac-

terizes indoor scenes better than image gist.

Our work shows that not only human labeling is neces-

sary for machine classification, but how humans err on the

labeling is instrumental for learning better generalizing fea-

tures and machine classifiers.
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