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Abstract

Selecting test cases in order to evaluate computer vision
methods is important, albeit has not been addressed before.
If the methods are evaluated on examples on which they per-
form very well or very poorly then no reliable conclusions
can be made regarding the superiority of one method ver-
sus the others. In this paper we put forth the idea that al-
gorithms should be evaluated on test cases they disagree
most. We present a simple method which identifies the test
cases that should be taken into account when comparing
two algorithms and at the same time assesses the statisti-
cal significance of the differences in performance. We em-
ploy our methodology to compare two object detection al-
gorithms and demonstrate its usefulness in enhancing the
differences between the methods.

1 Introduction

Evaluation of computer vision algorithms is challenging
and in the past few years the computer vision community
has seen an increasing effort in establishing protocols for
rigorous quantitative comparisons among various methods.
Research so far has been geared towards investigating mea-
sures of performance and creating databases of annotated
images and videos to serve as ground truth. While un-
deniably these are important components of an evaluation
scheme, no attention so far has been paid to the selection
process of the individual test cases; yet it is an important
problem.

Because of the richness of the visual stimuli and the diffi-
culty in obtaining ground-truth annotations, only a small set
of test-cases may be employed at a time and currently there
are no rules of thumb about what constitutes “good” evalu-
ation test cases. The images or videos in a test set are often
dependent since they are collected from the same individu-
als and from the same locations. As a result, an algorithm is
likely to perform similarly in many test cases and such a be-
havior makes comparable studies unreliable. Additionally,
if we employ test cases where all the methods perform very

well or very poorly, then any measure will fail to robustly
characterize performance differences.

A good evaluation test set should consist of representa-
tive examples that are neither too easy nor too difficult for
the methods under evaluation. Such selection cannot be per-
formed by users reliably; the level of difficulty of an exam-
ple depends on the algorithm and not on the human visual
perception. Instead, we can use the methods themselves to
assess whether an image or video is a good test case. By
choosing test cases on which the methods mostly disagree,
we focus on those aspects of performance that really differ-
entiate the methods and we can draw more reliable conclu-
sions regarding the superiority of a method versus another.

Figure 1 illustrates this point. Assuming that we order
the test cases based on the performance of one method, then
the leftmost and rightmost examples will be the ones for
which the methods perform similarly (either very well or
very poorly) and hence should be excluded from the study.
In essence, we define a window through which differences
in performance are enhanced. As computer vision algo-
rithms improve, we expect this window to slide towards the
right side of the graph. Previously difficult cases will be
more successfully handled by new state-of-the-art methods
and previously challenging cases will become increasingly
easy.

test cases (ordered by performance)

performance

selected test set

Figure 1: The test cases selected should be ones for which
the algorithms disagree.

To computationally assess which examples should be re-
moved from the test set, we propose a simple method which
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at the same time assesses the statistical significance of the
differences in performance. We successively remove test
cases from the test set, so that cases for which the algo-
rithms perform similarly are removed first. After each re-
moval, a statistical significance test is performed and the
p-value of accepting that the methods are indeed different
is computed. When thep-value permanently falls below the
desired threshold and the differences among the outputs of
the methods for the examples removed are small, then we
conclude that the difference in performance is significant.

Our methodology could be applied as is to a variety
of computer vision problems including segmentation and
tracking. In this paper we employ it to evaluate two
representative object detection algorithms. Well-known
precision-recall and average measures fail to give a confi-
dent answer regarding the superiority of an algorithm versus
the other for the particular test set employed. By looking at
the examples the two methods mostly differ in, we gain bet-
ter insight in understanding the caveats of the algorithms as
well as evaluate more confidently their quality.

2 Previous Work

Performance evaluation of object detection and tracking isa
challenging problem and we could distinguish two lines of
thinking when it comes to designing evaluation measures.

The first, relies on precision and recall values obtained
by comparing the result of a method against ground truth
data. Precision measures how faithfully the results match
the ground truth whereas recall penalizes the false positives
produced. The ideal method has very high precision and
very high recall, that is, it produces the desired output with
no false positive detections. Precision-recall curves like the
ones of Figure 2 have been proposed by various researchers
for evaluating motion, tracking, and detection algorithms
(refer to [7, 1, 5, 13] and references therein).

Precision-Recall curves may not offer a definite answer
as to whether a methodA is better than methodB since it is
often the case that different methods perform well on differ-
ent types of images. To this end, average measures like the
ones discussed in [10] are useful because they allow easy
comparisons at a glance. Their more accurate interpretation
though requires statistical significance testing [9]. Signif-
icance assessment though relies on many assumptions and
may not offer conclusive evidence regarding the superiority
of an algorithm over another.

Obtaining ground truth data is a laborious process. For
problems like segmentation and object recognition ground
truth data are more widely available ([8] and [11]). Track-
ing typically requires annotation of each frame and is more
difficult to obtain. The PETS workshop and the PASCAL
challenge offer a range of datasets sometimes accompanied

with ground truth that can be employed for evaluation of
object detection and tracking systems.

3 Method

Our goal is to select test cases in order to reliably compare
methodsA andB. The difficulty in this task lies in that
we can easily get a degenerate solution consisting of the
single test case whereA andB differ most. To avoid this
situation, we impose the additional constraint that for the
test cases removed the performance of methodsA andB

should be below a given threshold. Note that this constraint
does not eliminate the empty set solution, that is, all the test
cases should be removed. This is desirable though, since it
could be the case that the particular test set is too easy for
the methods and hence should not be employed.

We will address this question in the context of statistical
significance testing [2] and we will seek to find whether it
is possible to remove examples in order to establish statis-
tical significance between methodsA andB. Ultimately,
the goal is to establish whether the differences between two
methods are important. If the methods are evaluated on ex-
amples where they mostly perform similarly, this question
cannot be answered reliably; the power of a statistical test
is diluted.

Our algorithm is shown in Figure 3. The inputs required
are the results of two methodsA andB on a common set
of examplesS, as well as a similarity measure between the
performances ofA andB on a single test case. Such a sim-
ilarity measure can be computed either by directly compar-
ing the outputs of the methods or by measuring the compli-
ance of the result of each algorithm with ground truth.

We sequentially remove test cases from the test set so
that cases for which the algorithms perform most similarly
are removed first. This is done by employing a set of in-
creasingly higher thresholdsall_t, and removing exam-
ples whose similarity falls below the given threshold. For
each threshold, we compute thep-value of a statistical sig-
nificance test for the remaining results. In the end the al-
gorithm computes a set ofp-values for the corresponding
thresholds.

To decide whether the results ofA andB are indeed dif-
ferent we check whether the following statements are true.

1. There is a performance similarity thresholdt0 for
which the correspondingp-value,p0, falls below a cer-
tain confidence levelα (usually 0.05).

2. p-values corresponding to similarity thresholdst > t0
remain below the confidence levelα.

3. t0 has to be small. That is, we should allow removal of
test cases for which the difference between the perfor-
mances of the algorithms are small enough.
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INRIA 0.3486
UPenn 0.2728

(a) (b)

Figure 2: Known Evaluation Criteria: (a) precision-recall curves (b) mean values using the FrameDetection Accuracy
measure of [10].

It is not enough to simply find some threshold which
gives rise to a lowp-value; the calculation of this value
should be robust. Condition 2 essentially ensures that the
test cases removed are indeed outliers while significance
test can be reliably performed.

To assess whether a thresholdt0 is small, we normalize
all thresholds int_all so that they sum up to 1. This way
what we consider “small”, does not depend on the differ-
ence range between the particular algorithms.

Other computational techniques could be employed at
this stage. For example, one could use RANSAC [4] to find
the outliers among the differences in the performance mea-
sures of the two methods. These outliers should be the test
cases to evaluate the methods on. We could extend the cur-
rent approach to compare more than two methods at a time
by using ANOVA [6] instead oft-test.

4 Case Study: Object Detection

Our goal in this section is not to provide a rigorous evalu-
ation between the methods selected, but rather demonstrate
how our methodology can be employed to establish reliably
the performance superiority of a method vs. another for a
given set of images.

We compare two representative object detection meth-
ods whose source code is available on the web. The first
method, to which we will refer to as “INRIA” [3], employs
gradient orientation histogram features and a linear SVM
classifier to determine the existence of people in a scene.
The second method [12], which we will refer to as “UPenn”,

uses a codebook constructed from the silhouettes of a vari-
ety of pedestrians and tries to match them against candidate
pedestrians in a new scene. Shape context is used to rep-
resent the silhouettes and the hypotheses are generated us-
ing the edge map and the segmentation of the image. We
used the training data sets that the authors provided with
their code and tested on a subset of the annotated INRIA-
person database which was also part of the PASCAL 2005
challenge. The subset consisted of 78 images randomly se-
lected.

Table 2 shows common performance measures that can
be used to describe the results of the two algorithms. The
calculation of the precision-recall curves requires assessing
whether an image area identified by an algorithm indeed
corresponds to a person. A detection was considered a true
positive if the area of the intersection of the estimated re-
gion with the ground truth was more than50% of the area
of the union. The closer both precision and recall are to 1,
the better an algorithm is and thus the topmost curve in a
precision-recall graph corresponds to the best performance.
For the methods at hand such conclusion is not possible
since in some cases “INRIA” performs better and in some
others ”UPenn”.

To compute a single quantity characterizing the perfor-
mance of a method, we can combine precision and recall in
a single measure, and subsequently compute the mean over
the entire test set. To this end we used the Frame Detection
Accuracy (FDA) measure described in [10], and defined as
follows:

FDA =
Overlap Ratio

NG+ND

2

(1)
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function discriminative_evaluation(S_A, S_B)

% S_A: results obtained from method A on testset S
% S_B: results obtained from method B on testset S

all_p = {}
for t in all_t

S_At = {I_A: d(I_A,I_B) < t} % difference in performance < t
S_Bt = {I_B: d(I_A,I_B) < t}
S_A = S_A - S_At % remove results from results of A
S_B = S_B - S_Bt % remove results from results of B
p = assess_significance(S_A, S_B) % compute p-value for reduced result set
add p in all_p

end

% decision procedure
if (p_0 < 0.05) & (t_0 small) & (p < 0.05 for t > t_0)

S_A and S_B different

Figure 3: Our algorithm for removing test cases on which methodsA andB perform similarly as well as assessing the
significance of the difference between the methods’ performances.

whereNG is the number of ground truth objects andND the
number of detected objects. The overlap ratio is computed
as follows:

Overlap Ratio=
Nmapped∑

i=1

|Gi ∩ Di|

|Gi ∪ Di|
(2)

whereGi denotes thei-th ground truth object andDi the
i-th detected object. The calculation of the overlap ratio
requires to find a mapping between the detected and the
ground truth objects in an image. For that, we employed
a simple greedy procedure: to each of the detected objects
we assigned the ground truth object with the largest area
overlap.

Figure 2 shows the mean FDA’s for the methods eval-
uated. The mean of the “INRIA” method is higher than
the mean of “UPenn”, but it is not clear whether such a
difference is important. By using at-test on the detec-
tion accuracies for the two methods we do not obtain sta-
tistical significance for confidence levelα = 0.05; in fact
p = 0.0735 > 0.05.

However, we can gain valuable insight regarding the per-
formance of the algorithms by looking at the detection ac-
curacies for the individual images. Such a plot is shown in
Figure 4. The red stars belong to performance measures of
“INRIA” and the blue circles to those of “UPenn”. The plot
immediately leads to interesting observations that cannotbe
so readily inferred from the measures of Figure 2: the “IN-
RIA” algorithm has a tendency to underestimate the num-
ber of objects detected in an image and its performance is
either really good or really bad. On the other hand the per-

formance of the “UPenn” algorithm lies mostly in the mid
level area due to its tendency to produce many false posi-
tives. The images in this table present some representative
results for the different performance levels. By qualitatively
assessing the plot, one could argue that the performance of
the “INRIA” algorithm is indeed better from the “UPenn”.
However, how can we establish that, since common statisti-
cal significance criteria argue against it?

Our method proceeds by iteratively removing data points
for which the algorithms perform increasingly less simi-
larly. Similarity is assessed in two steps. First, the output of
each method is compared against the ground truth using the
FDA measure of Equation 1. Second, the absolute value of
the difference between the two FDA measures is computed.
At each iteration, images for which the similarity between
the outputs of the two methods lies below a given thresh-
old are removes The plots at the second row of Figure 5
illustrate how the removal of points affects the configura-
tion of performance values. The images below each plot are
representative examples of data points removed. For small
thresholds, the images removed are ones for which the algo-
rithms perform very similarly. The specific case illustrated
is an image where both algorithms entirely fail: the “IN-
RIA” method misses the person, whereas the “UPenn” pro-
duces too many false positives. As the threshold increases
the output of the algorithms become less and less similar.

For the methods at hand, a small threshold is sufficient
for achieving statistical significance, as shown in the top-
most plot of Figure 5. The results for which the perfor-
mance similarity is less than 0.1 are visually very similar
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Figure 4: Performance levels for the object detection algorithms examined. The top plot shows the detection accuracy for
each image for the two algorithms. The ellipses outline images for which the objects are detected with high accuracy, medium
accuracy and low accuracy. Example results of each performance category for both methods are also shown.

5



0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.02

0.04

0.06

0.08

0.1

p
−

v
a

lu
e

s

difference threshold for datapoint removal

Significance for Increasingly Reduced Pointsets

A

B C

A B C

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Image

Frame Detection Accuracy: threshold = 0.110000

 

 

INRIA
UPenn

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Image

Frame Detection Accuracy: threshold = 0.310000

 

 

INRIA
UPenn

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Image

Frame Detection Accuracy: threshold = 0.410000

 

 

INRIA
UPenn

Figure 5: First Row: The plot at the top of the figure was produced by successively removing the images for which the
algorithms performed similarly and subsequently performing at-test on the remaining data. For example, pointA on the
graph was produced by removing the images for which the difference between the performances was less than 0.11.Second
Row: The plotsA, B andC show the configuration of the detection accuracies when increasingly less similar performances
are removed. The pointsA, B andC on the topmost plot were obtained by usingt-test on the corresponding performance
configurations.Bottom Rows: Examples of images removed in order to obtain configurationsA, B andC. The top images
show the detection results obtained with the INRIA algorithm while the bottom detections were obtained with the UPenn
method.
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and thus the particular threshold is acceptable for this case.
Furthermore, thep-value falls beneath0.05 and remains
there for higher thresholds. This way, one can numerically
establish the qualitative observation that the “INRIA” algo-
rithm performs better on average for the given test set.

5 Conclusions and Future Work

Despite advances in evaluation measures and ground truth
datasets, the problem of what constitutes a good test case
has not been addressed in the past. In this paper we have
advocated, that algorithms should be evaluated on test cases
they disagree most and we have provided a methodology of
identifying those cases and assessing the statistical signifi-
cance between performance differences.

Central to our methodology has been the similarity be-
tween the outputs of the methods under evaluation. In
the work presented, the computation of similarity required
ground-truth data. However, this need not be the case; one
could compare directly the outputs of the methods. Such
an approach might not be as reliable as when ground truth
is employed, however it can provide guidance as to what
test cases should be annotated. For problems like tracking
and surveillance, where annotations are particularly labori-
ous and time-consuming, knowing what frames to annotate,
without affecting the reliability of an evaluation method,
would be very beneficial.
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