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Abstract. The goal of lossy image compression ought to be reducing
entropy while preserving the perceptual quality of the image. Using gaze-
tracked change detection experiments, we discover that human vision
attends to one scale at a time. This evidence suggests that saliency should
be treated on a per-scale basis, rather than aggregated into a single
2D map over all the scales. We develop a compression algorithm which
adaptively reduces the entropy of the image according to its saliency map
within each scale, using the Laplacian pyramid as both the multiscale
decomposition and the saliency measure of the image. We finally return
to psychophysics to evaluate our results. Surprisingly, images compressed
using our method are sometimes judged to be better than the originals.

1 Introduction

Typical lossy compression methods treat an image as a 2D signal, and attempt
to approximate it minimizing the difference (e.g. Lo norm) from the original. By
linearly transforming an image using an orthogonal basis (e.g. Haar wavelets),
solutions of minimal difference can be computed by zero-ing out small coefficients
[1,2]. As there are many different zero-ing schemes corresponding to the same
total difference, various thresholding techniques (e.g. wavelet shrinkage) that
aim to reduce visual artifacts have been developed [3-6].

However, an image is not just any 2D signal. It is viewed by human observers.
Lossy image compression should reduce entropy while preserving the perceptual
quality of the image. Signal-based methods fall short of both requirements: zero-
ing out small coefficients aims at reducing pure signal differences instead of
entropy, and reducing signal difference does not guarantee visual quality.

Our work concerns the use of visual saliency to guide compression. This topic
has been explored on multiple fronts, such as modifying the JPEG format [7],
compressing salient and non-salient regions with separate algorithms [8], and
applying saliency-based non-uniform compression to video [9]. Most saliency
models yield a location map based on low-level cues [10], or scene context and
visual task [11], treating scale like any other primary feature such as orientation,
color, and motion. Computer vision algorithms often concatenate measurements
at multiple scales into one feature vector without questioning its validity.
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We first conduct an eye tracking experiment, and discover that human vision
often attends to one scale at a time, while neglecting others (Sec. 2). We then
develop a saliency-based compression scheme in which the entropy is reduced at
each scale separately, using that scale’s saliency map (Sec. 3). We finally vali-
date our approach in another psychophysical experiment where human subjects
render their judgement of visual quality between pairs of briefly presented im-
ages (Sec. 4). Our compression results not only look better than the signal-based
results, but, surprisingly, in some cases even better than the originals! One expla-
nation is that our saliency measure captures features most noticeable in a single
glance, while our entropy reduction aggressively suppresses the often distracting
background, enhancing the subjective experience of important visual details.

2 Scale and Human Visual Attention

Our inspiration comes from studying change blindness [12]: When two images
are presented with an interruption of a blank, the blank wipes out the retinal
stimulation usually available during natural viewing, making the originally trivial
change detection extremely difficult, even with repeated presentations. Using an
eye tracker, we discover 3 scenarios between looking and seeing (Fig. 1):

1) Most detections are made after the gaze has scrutinized the change area.

2) If the gaze has never landed upon the area, seeing is unlikely.

3) Sometimes the gaze repeatedly visits the change area, however, the subject
still does not see the change.

Our gaze data reveals two further scenarios for the last case of no seeing
with active looking. 1) For 80% of visits to the area of change, the gaze did not
stay long enough to witness the full change cycle. As the retina is not receiving
sufficient information regarding the change, blindness naturally results. 2) For
the rest 20% of visits which involve 9 of 12 stimuli and 10 out of 11 subjects,
the gaze stayed in the area more than a full cycle, yet the change still escaped
detection. Those are true instances of looking without seeing [13].

1. looking and seeing 2. no looking, no seeing 3. active looking, no seeing

Fig. 1. Relationship between looking and seeing. A four-image sequence, I, B, J, B,
is repeatedly presented for 250ms each. I and J denote images a major difference (the
presence of a person in the white circle in this case), and B a blank. Shown here are
3 subjects’ gaze density plots as they search for the difference. Red hotspots indicate
the locations that are most looked at. Only Subject 1 detected the change.
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Fig. 2. The scale difference between fixations is more than 1.5 folds (solid lines) in 88%
cases. The horizontal axis is for the size of change. The vertical axis is the size of the
area examined in the fixation before entering (W) or after exiting (x) the change area.
While the size here is determined based on manually outlined focal regions, similar
results are obtained with synthetic stimuli varying only in the size dimension.

We examine the retinal inputs fixation-by-fixation. In most true instances
of looking without seeing, the areas visited by the eye right before or after the
change area tend to have features of a different scale from the change (Fig. 2).
If at time ¢t — 1 the subject is looking at a coarse-scale structure, he is likely to
be oblivious to the change in a fine-scale structure at time ¢, and he tends to
continue looking at a coarse-scale structure at time ¢ + 1. In other words, when
the visual system attends to one scale, other scales seem to be neglected.

3 Saliency and Compression

Our experiment suggests that human vision attends to one scale at a time, rather
than processing all scales at once. This implies that saliency should be defined on
a per-scale basis, rather than aggregated over all scales into a single 2D saliency
map, as it is typically done [10]. We use the Laplacian pyramid [1] to define a
multi-scale saliency map, and we use range filters [14] to reduce the entropy of
each scale, applying more range compression to less salient features (Fig. 3).

We adopt the Laplacian pyramid as both the multiscale signal decomposition
and the saliency measure of the image, since the Laplacian image is the differ-
ence of images at adjacent scales and corresponds to center-surround filtering
responses which indicate low-level feature saliency [10].

Step 1: Given image I and number of scales n, build Gaussian pyramid G and
Laplacian pyramid L, where | = downsampling, T = upsampling
Gs11 =| (G4 x Gaussian), Gy =1, s=1—n (1)
Ls = GS— T Ls+17 Ln+1 = Gn+1, s=n—1 (2)
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Fig. 3. Our image compression uses the Laplacian pyramid as both a signal represen-
tation and a saliency measure at multiple scales.

To turn the Laplacian responses into meaningful saliency measures for com-
pression, we first normalize it (L — R) and then rectify it (R — S) using sigmoid
transform with soft threshold m and scale factor a (Fig. 4). a controls saliency
sharpness and is user-specified. We then use binary search to find the optimal m
that satisfies the total saliency percentile p: If S = 1, p = 1, every pixel has to
be maximally salient, whereas if p = 0.25, about 25% of the pixels are salient.

Step 2: Given percentile p and scaling factor «, compute saliency S from L
using a sigmoid with threshold m:

Rs—mg -1
Ssz(l—i—e_ = ) ,s=1:n (3)

= ar "me.) =1p- :&
s = g{;SS(’ ) =P Ei:l}’Rs max(|Ls|) ®

We modify Laplacian L by range filtering with saliency S. Range compression
replaces pixel ¢’s value with the weighted average of neighbours j’s, larger weights
for pixels of similar values [14]. Formulating the weights W as a Gaussian of
value differences, we factor saliency S into covariance ©: High saliency leads to
low ©, hence high sensitivity to value differences, and value distinction better
preserved. The maximal amount of compression is controlled by the range of
Laplacian values at that particular scale (Eqn. 7).

Range Compression Construction
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Fig. 4. Sigmoid function rectifies the Laplacian to become a saliency measure. m is a
soft threshold where saliency becomes 0.5. a controls the range of intermediate saliency
values. Low « forces a binary (0 or 1) saliency map.
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Fig. 5. The Laplacian is range compressed as a signal subject to itself as saliency
measure. The reduction in entropy is achieved by implicit adaptive binning in the
histograms. We can have some idea of the bin size by examining the standard deviation
of W: 02 = VI—35 - (max(L) — min(L))/B. The first factor v/1 — S makes the bin
dependent on the value, whereas the second (max(L) — min(L))/3 makes it dependent
on the scale, for the range of L naturally decreases over scale.
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Step 3: Given S, neighbourhood radius r and range sensitivity factor 3, gen-
erate a new Laplacian pyramid L’ by spatially-variant range filtering of L:

> jenm Ls(G) - Wili,j)

) = s e Wyt = L s =L (6)

Ws(la]) = G*W’ (6)
. 2

O, (i) = (1 — S, (i) - <maX(LS) 5 mm(LS)) (7)

The nonlinear filtering coerces the Laplacian values towards fewer centers
(Fig. 5). It can be understood as scale- and value-adaptive binning: As the scale
goes up, the bin gets smaller; as the value increases, the saliency increases, and
the bin also gets smaller. As the value distribution becomes peakier, the entropy
is reduced and compression results. The common practice of zero-ing out small
values in Laplacians or wavelets only expands the bin at 0 while preserving
signal fidelity, whereas our saliency regulated local range compression adaptively
expands the bin throughout the levels while preserving perceptual fidelity.

Finally, we synthesize a new image by collapsing the compressed Laplacian
pyramid (Fig. 3 G’, L'). Note that L and L’ look indistinguishable, whereas
nonsalient details in G are suppressed in G”.

Step 4: Construct the compressed image J by collapsing the new Laplacian L'

G;:LQ+TG;+1, ;Z+1:L;l+178:n_>11J:Gll (8)

4 Evaluation

Lossy image compression sacrifices quality for saving bits. Given infinite time to
scrutinize, one is bound to perceive the loss of details in a compressed image.
However, in natural viewing, instead of scanning the entire image evenly, we only
dash our eyes to a few salient regions. Having developed an image compression
method based on human vision, we now return to it to evaluate our results.

We carry out two-way forced choice visual quality comparison experiments
using 12 standard test images (Fig. 8). Using our method, we generate 16 results
per image with a € {0.01,0.1}, p € {0.25,0.5}, r € {3,6} 8 € {5,10}. For each
image, we choose 3 compression levels that correspond to minimal, mean and
maximal JPEG file sizes. For each level, we find a signal-compressed version of
the same JPEG file size but reconstructed from zero-ing out sub-threshold values
in the Laplacian pyramid. The threshold is found by binary search.

We first compare our results with signal-based results (Fig. 6). Each com-
parison trial starts with the subject fixating the center of a blank screen. Image
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Fig. 6. Comparison of signal-based compression (row 1) and our perception-based com-
pression (row 2). Row 3 shows a plot of quality ratings of our results for different com-
pression ratios. The quality rating is the fraction of subjects who judged our results
to be better than those produced by the signal-based algorithm. Each dot in the plot
represents a quality rating of the perception-based compression of a particular image
resulting in the compression ratio given by the horizontal axis. Our results are better
in general, especially with more compression.
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wavelet compression:

Fig. 7. Our results (row 2) are better than compression by Daubechies 9-tap/7-tap
wavelet with level-dependent thresholding (row 1) for the same JPEG file size.

1 is presented for 1.2s, followed by a gray random texture for 0.5s, image 2 for
1.2s, and random texture again till a keypress indicating which one looks better.
The occurrence order within each pair is randomized and balanced over 15 naive
subjects, resulting in 30 trials per pair of images. Our quality rating is deter-
mined by the percentage of favorable votes for our method: 0.5 indicates that
the images from two methods have the same visual quality statistically, whereas
a value greater(less) than 0.5 means our results are better(worse). The visual
quality of our results is better overall, especially with heavier compression.

We have also computed wavelet compression results with various settings:
Haar vs Daubechies 9-tap / 7-tap wavelet, global- vs. level-dependent thresh-
olding via Birge-Massart strategy. They have their own characteristic patterns
in quality loss over heavy compression. Our compressed images degrade more
gracefully than those as well (Fig. 7).

Finally, we compare our results at the best quality level to the original images
(Fig. 8). 1) At a short exposure, our results are entirely indistinguishable from
the original; 2) At a medium exposure, ours are better than the original! The
enhancement is particularly strong for face images. 3) At a long exposure, our
results become slightly worse. Such exposure-dependence in fact supports the
validity of our saliency model: Our method captures visual features of the first-
order significance at the cost of losing details of the second-order significance.

At low levels of compression, our method produces an air-brush effect which
emphasizes strong straight edges and evens out weak and curly edges, lending



Lecture Notes in Computer Science 9

1} “e-0.4 sec: mean = 0.50 = 0.5, p = 1.00°
~® 0.8sec:mean=0.52>0.5p=0.78
~® 1.2sec: mean =0.48<0.5,p=0.90

Quality Rating w.r.t. Original

I: original image J: our compression I — J: difference

Fig. 8. Comparison between the originals and our compressed results (row 1) on 12
test images (row 2) at the exposure times of 0.4, 0.8, and 1.2 seconds, with p-values
from two-, right-, and left-tailed one-sample t-tests between the means and the equal
quality level 0.5. Our results are equally good at the short exposure (too short for
anyone to notice any differences), better at the medium exposure, and worse at the
long exposure (long enough to notice the distinction in richness). The enhancement at
the medium exposure is most positive in image 2 (row 3), and most negative in image
10 (row 4), where the air-brush effect makes the facial characteristics clearer and the
pepper textures disturbingly fake.
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more clarity to a face image while destroying the natural texture in a pepper
image (Fig. 8 bottom). At higher levels of compression (Fig. 7), our method
creates the soft focus style used by photographer David Hamilton, which blurs
the image while retaining sharp edges.

Summary. Our human vision study suggests that a saliency model must
treat each scale separately, and compression must preserve salient features within
each scale. We use the Laplacian pyramid as both signal representation and
saliency measures at individual scales. Range compression modulated by saliency
not only results in entropy reduction, but also preserves perceptual fidelity. This
can be viewed as value- and scale-adaptive binning of the distributions, an ele-
gant alternative to various thresholding strategies used in wavelet compression.
Our validation with human viewers indicates that our algorithm not only pre-
serves visual quality better than standard methods, but can even enhance it.
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