Linear Solution to Scale and Rotation Invariant Object Matching

Hao Jiang and Stella X. Yu Computer Science Department Boston College

Problem

Target Mesh

Challenges

Template Image

Target Images

Challenges

Template Image

Target Images

Some Related Methods

- Hough Transform and RANSAC
- Graph matching
 - Dynamic Programming
 - Max flow min cut [Ishikawa 2000, Roy 98]
 - Greedy schemes (ICM [Besag 86], Relaxation Labeling [Rosenfeld 76])
 - Back tracking with heuristics [Grimson 1988]
 - Graph Cuts [Boykov & Zabih 2001]
 - Belief Propagation [Pearl 88, Weiss 2001]
- Convex approximation [Berg 2005, Jiang 2007, etc.]

The Outline of the Proposed Method

- A linear method to optimize the matching from template to target
- The linear approximation is simplified so that its size is largely decoupled from the number of target candidate features points
- Successive refinement for accurate matching

The Optimization Problem

In Compact Matrix Form

We will turn the terms in circles to linear approximations

The L1 Norm Linearization

• It is well known that L1 norm is "linear"

$$\begin{array}{c} \min |x| & \longleftarrow & \min (y + z) \\ \text{Subject to } x = y - z \\ y, z \ge 0 \end{array}$$

• By using two auxiliary matrices Y and Z, $| EMR - sEXT | \rightarrow 1'n_e (Y + Z) 1_2$ subject to Y - Z = EMR - sEXTY, Z >= 0

Linearize the Scale Term

 $sX = \sum_{l=1}^{n_s} s_l X_l \implies sEXT = \sum_{l=1}^{n_s} s_l EX_l T$ All sites select the same scale $\sum_{l=1}^{n_s} s_l X_l 1_{n_t} = s1_{n_m}$

Linearize Rotation Matrix

$$\begin{array}{l} R'R = I & \longrightarrow \\ v & u \end{array} R = \begin{bmatrix} u & -v \\ v & u \end{bmatrix} \\ u \pm v = \pm 1, \quad |u| \leq 1, \ |v| \leq 1 \end{array}$$

The Linear Optimization

LP:
$$\min \varepsilon(X, s, u, v, Y, Z, X_1, \dots, X_{n_s}) = \operatorname{tr}(C'X) + \lambda \mathbf{1}'_{n_e}(Y + Z)\mathbf{1}_2$$

subject to $Y - Z = EM \begin{bmatrix} u & -v \\ v & u \end{bmatrix} - \sum_{l=1}^{n_s} s_l EX_l T$
 $Y, Z \ge 0, \quad u \pm v = \pm 1, \quad |u| \le 1, \quad |v| \le 1$
 $X = \sum_{l=1}^{n_s} X_l, \quad X_l \ge 0, \forall l$
 $\sum_{l=1}^{n_s} s_l X_l \mathbf{1}_{n_t} = s\mathbf{1}_{n_m}$
 $X\mathbf{1}_{n_t} = \mathbf{1}_{n_m}, X \ge 0$
Target point estimations

The Lower Convex Hull Property

 Cost surfaces can be replaced by their lower convex hulls without changing the LP solution

A cost "surface" for one point on the template

The lower convex hull

Removing Unnecessary Variables

 Only the variables that correspond to the lower convex hull vertices need to be involved in the optimization

Complexity of the LP

The size of the LP is largely decoupled from the number of target candidates

Successive Refinement

Matching Objects in Real Images

Result Videos

Statistics

	book	magazine	bear	butterfly	bee	fish
#frames	856	601	601	771	101	131
#model	151	409	235	124	206	130
#target	2143	1724	1683	1405	1029	7316
time	1.6s	11s	2.2s	1s	2s	0.9s
accuracy	99%	97%	88%	95%	79%	95%

Results Comparison

Accuracy and Efficiency

Experiments on Ground Truth Data

Error distributions for fish dataset

Experiments on Ground Truth Data

Error distributions for random dot dataset

Summary

- A linear method to solve scale and rotation invariant matching problems accurately and efficiently
 - The proposed method is flexible and can be used to match images using different features
 - It is useful for many applications including object detection, tracking and activity recognition
- Future Work
 - Multiple scale solution
 - More complex transformations
 - Articulated object matching