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Edge-Preserving Pyramid for Image Synopsis
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1. remove spatial redundancy

2. retain perceptual saliency

3. refine over scale
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Multiscale based on Signal or Perceptual Analysis

+ + +

differences average

+ + +

signal

perceptual

3 / 16



Local Average to Remove Spatial Redundancy

I(p)≈ Ī(p) =
∑

q=p′s local neighbour

W(p,q) · I(q)

◮ W(p,q) describes how q contributes to predicting p’s intensity

◮ Ī becomes smoother than I and can be downsampled

◮ Pyramid: recursive application of averaging + downsampling

In the signal-based multiscale analysis:

◮ W is pre-chosen

◮ W is fixed over the entire image

◮ No consideration for either Ī or I− Ī
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Laplacian Pyramid Construction and Collapsing

Analysis: Given analysis weights WÏ and synthesis weights WÍ,

average: As+1 = ↓(As,WÏ), s= 1→ n, A1 = I

difference: Ds = As−↑(As+1,WÍ), s= n→ 1, Dn+1 = An+1

Synthesis: Given difference pyramid D,

average: As = Ds+ ↑(As+1,WÍ), s= n→ 1, An+1 = Dn+1

reconstruction: I = A1
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Analysis and Synthesis Weights Are Independent

Before: WÏ and WÍ are identical and spatially invariant.

proximity: WÏ(p,q) =WÍ(p,q) = G(‖
−→
p −
−→
q ‖;σ)

G(d;σ) = exp

�

−
d2

2σ2

�

Fact: WÏ and WÍ can be independently defined and in fact

arbitrary without jeopardizing a perfect reconstruction.

After: WÏ 6=WÍ, both vary according to edges at each pixel.

WÏ(p,q; I) = G(‖
−→
p −
−→
q ‖;σÏ) × Kg(p,q; I)

WÍ(p
′,q; I) = G(‖

−→
p ′−
−→
q ‖;σÍ) × Kg(p

′,q; I)
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Edge Geometry Kernel Kg for Downsampling
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C(p,q)≈ 0 Kg(p,q)≈ 0 via q+ and q− C(p,q) via m

L(p,q) =

¨

min(E(p),E(q)), P(p) 6= P(q)

0, P(p) = P(q)

C(p,q) =

¨

G(L(p,q); σg), q ∈ N(p, 1)

min(Kg(p,m),Kg(m,q)),
−→
m =

−→
p +
−→
q

2
, q ∈ N(p, 2)

Kg(p,q) =min(C(p,q), max
o∈{q+,q−}

C(p,o)), |∡q±pq|= 45◦,q,q± ∈ N(p, r)
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Edge Geometry Kernel Kg for Upsampling
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G(L(p′,q);σg), ‖
−→
p ′−
−→
q ‖≤‖

−→
p −
−→
q ‖,q ∈ N(p, 1)

G(max(L(p′,p),L(p,q));σg), ‖
−→
p ′−
−→
q ‖>‖

−→
p −
−→
q ‖,q ∈ N(p, 1)

min(Kg(p
′,m),Kg(m,q)),

−→
m =

−→
p +
−→
q

2
,q ∈ N(p, 2)

Kg(p
′,q) =min(C(p′,q), max

o∈{q+,q−}
C(p′,o)), |∡q±pq|= 45◦,q,q± ∈ N(p, r)

8 / 16



Comparison of Interpolation Methods

original: 31× 31 15× 15 62× 62

Gaussian nearest bilinear bicubic our results

by circle formula

by image interpolation
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Comparison of the Average as an Image Synopsis

Gaussian nearest bilinear bicubic our results

down to 1

4
×size

up to 4×size
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Comparison of the Difference as an Image Code

standard test images
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Reduced Entropy in the Difference Images
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4-Time Additional Savings in Lossless Compression
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More Savings than Any Interpolation Methods

perceptual over Gaussian nearest bilinear bicubic

bits per pixel −1.20 −0.16 −0.37 −0.38

confidence ±0.14 ±0.14 ±0.05 ±0.05

p-value 1.5× 10−7 3.3× 10−2 4.1× 10−7 3.0× 10−7

As an image code, nearest neighbour is most efficient.

It is better than the widely known Laplacian Pyramid.
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Faithful Image Synopsis and Effective Image Code

◮ Signal-based multiscale methods always face a trade-off:

as an image synopsis, bicubic interpolation is most faithful;

as an image code, nearest neighbour is most efficient.

◮ Edge-preserving pyramid outperforms on either account:

The averages retain boundaries and shading at lower spatial

and tonal resolutions;

The differences refine edge locations and intensity details

with a remarkably sparse code.
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Distinction with Other Edge-Preserving Methods

◮ anisotropic diffusion: gradients→ curvilinearity

◮ bilateral filtering: intensity similarity→ boundary separation

◮ nonlocal mean filtering: staircasing effects→ none

◮ wavelets: expand basis, e.g. ridgelets→ locally adaptive basis
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