Edge-Preserving Laplacian Pyramid

Stella X. Yu Computer Science Boston College

Acknowledgements: Clare Boothe Luce Professorship NSF CAREER IIS-0644204

International Symposium on Visual Computing, 2009

Edge-Preserving Pyramid for Image Synopsis

image

- 1. remove spatial redundancy
- 2. retain perceptual saliency
- 3. refine over scale

Multiscale based on Signal or Perceptual Analysis

Local Average to Remove Spatial Redundancy

$$I(p) \approx \overline{I}(p) = \sum_{q=p' \text{s local neighbour}} W(p,q) \cdot I(q)$$

- W(p,q) describes how q contributes to predicting p's intensity
- \overline{I} becomes smoother than I and can be downsampled
- Pyramid: recursive application of averaging + downsampling

In the signal-based multiscale analysis:

- W is pre-chosen
- *W* is fixed over the entire image
- ► No consideration for either \overline{I} or $I \overline{I}$

Laplacian Pyramid Construction and Collapsing

Analysis: Given analysis weights W_{∇} and synthesis weights W_{Δ} ,

average:
$$A_{s+1} = \downarrow (A_s, W_{\bigtriangledown}), \qquad s = 1 \rightarrow n, \quad A_1 = I$$

difference: $D_s = A_s - \uparrow (A_{s+1}, W_{\triangle}), \quad s = n \rightarrow 1, \quad D_{n+1} = A_{n+1}$

Synthesis: Given difference pyramid D,

average: $A_s = D_s + \uparrow (A_{s+1}, W_{\triangle}), \quad s = n \to 1, \quad A_{n+1} = D_{n+1}$ reconstruction: $I = A_1$

Analysis and Synthesis Weights Are Independent

Before: W_{∇} and W_{Δ} are identical and spatially invariant.

proximity:
$$W_{\nabla}(p,q) = W_{\Delta}(p,q) = G(\|\overrightarrow{p} - \overrightarrow{q}\|;\sigma)$$

$$G(d;\sigma) = \exp\left(-\frac{d^2}{2\sigma^2}\right)$$

Fact: W_{\bigtriangledown} and W_{\triangle} can be **independently** defined and in fact **arbitrary** without jeopardizing a perfect reconstruction.

After: $W_{\nabla} \neq W_{\Delta}$, both vary according to edges at each pixel.

Edge Geometry Kernel K_g for Downsampling

$$C(p,q) \approx 0 \quad | \begin{array}{c} \circ & \circ & q_{+} \circ & \circ & q_{+} \circ \\ \circ & p & q \\ \circ & q_{-} \circ & \circ & q_{-} \circ \\ C(p,q) \approx 0 \\ C(p,q) \approx 0 \\ C(p,q) \approx 0 \quad | \begin{array}{c} \circ & q_{+} \circ & \circ & q_{+} \circ \\ \circ & q_{-} \circ & \circ & q_{-} \circ \\ K_{g}(p,q) \approx 0 \text{ via } q_{+} \text{ and } q_{-} \\ C(p,q) \text{ via } m \\ C(p,q) = \begin{cases} \min(E(p), E(q)), & P(p) \neq P(q) \\ 0, & P(p) = P(q) \\ 0, & P(p) = P(q) \\ (q) = \begin{cases} G(L(p,q); \sigma_{g}), & q \in N(p, 1) \\ \min(K_{g}(p,m), K_{g}(m,q)), & \overrightarrow{m} = \frac{\overrightarrow{p} + \overrightarrow{q}}{2}, & q \in N(p, 2) \end{cases}$$

 $K_g(p,q) = \min(C(p,q), \max_{o \in \{q_+,q_-\}} C(p,o)), |\measuredangle q_{\pm}pq| = 45^\circ, q, q_{\pm} \in N(p,r)$

Edge Geometry Kernel K_g for Upsampling

 $K_g(p',q) = \min(C(p',q), \max_{o \in \{q_+,q_-\}} C(p',o)), |\measuredangle q_{\pm}pq| = 45^\circ, q, q_{\pm} \in N(p,r)$

Comparison of Interpolation Methods

Comparison of the Average as an Image Synopsis

10/16

Comparison of the Difference as an Image Code

standard test images

Reduced Entropy in the Difference Images

4-Time Additional Savings in Lossless Compression

More Savings than Any Interpolation Methods

perceptual over	Gaussian	nearest	bilinear	bicubic
bits per pixel	-1.20	-0.16	-0.37	-0.38
confidence	±0.14	±0.14	±0.05	±0.05
<i>p</i> -value	1.5×10^{-7}	3.3×10^{-2}	4.1×10^{-7}	3.0×10^{-7}

As an image code, nearest neighbour is most efficient. It is better than the widely known Laplacian Pyramid.

Faithful Image Synopsis and Effective Image Code

Signal-based multiscale methods always face a trade-off:

as an image synopsis, bicubic interpolation is most faithful; as an image code, nearest neighbour is most efficient.

• Edge-preserving pyramid outperforms on either account:

The averages retain boundaries and shading at lower spatial and tonal resolutions; The differences refine edge locations and intensity details with a remarkably sparse code. Distinction with Other Edge-Preserving Methods

• anisotropic diffusion: gradients \rightarrow curvilinearity

▶ bilateral filtering: intensity similarity → boundary separation

• nonlocal mean filtering: staircasing effects \rightarrow none

▶ wavelets: expand basis, e.g. ridgelets \rightarrow locally adaptive basis