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Our goal is to turn an intensity image into its perceived

luminance without parsing it into depths, surfaces, or scene

illuminations. We start with jarring intensity differences at

two scales mixed according to edges, identified by a pixel-

centric edge detector. We propose angular embedding as a

more robust, efficient, and versatile alternative to LS, LLE,

and NCUTS for obtaining a global brightness ordering from

local differences. Our model explains a variety of bright-

ness illusions with a single algorithm. Brightness of a pixel

can be understood locally as its intensity deviating in the

gradient direction and globally as finding its rank relative

to others, particularly the lightest and darkest ones.

1. Introduction

The objective intensity of light recorded in an image

does not always accord with our subjective experience of it.

Measured at equal intensity, a shaded white patch appears

brighter than an illuminated gray patch (2 & 3 in Fig. 1).
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intensity: I1 > I2 = I3 > I4 = I5 > I6

brightness: B1 > B2 > B3 > B4 > B6 > B5

lightness: L1 = L2 > L3 = L4 = L6 > L5

Figure 1. Distinction of intensity, brightness, and lightness. This

image features a 3D box whose top and front surfaces have iden-

tical text and background colors. 6 pixels are circled, labeled, and

under marked with their intensity values between 0 and 1. Their

perceived luminance and reflectance, i.e., brightness and lightness,

could be ordered very differently from their measured intensity.

This phenomenon reflects of human vision not a failure,

but a remarkable ability to sense stable physical properties

under ever changing illumination. Understanding how this

subjective experience can be achieved computationally is

thus of fundamental importance to effective object recogni-

tion, spatial reasoning, and material rendering.

Our goal is to turn the objective intensity of light into its

subjective brightness, without parsing the intensity image

into depths, surfaces, or scene illuminations.

We first define 3 objective and 2 subjective quantities [1]:

illuminance=amount of light incident on a surface

luminance=amount of light hitting the sensor from a surface

reflectance=proportion of incident light reflected by a surface

lightness=perceived reflectance of a surface

brightness=perceived luminance from the image itself

That is, image = luminance = illuminance × reflectance.

For lightness, the observer is asked to judge the brilliance

of physical paint on the surface depicted by the image, and

for brightness, the grayscale level in the image itself.

For example, the center of letter S on the top and front

surfaces in Fig. 1, i.e., 1 & 2, have the same reflectance,

and appear of the same lightness. 1 has higher intensity and

looks brighter than 2, due to higher illuminance on the top.

When brightness ranks differently from intensity, it tends

to agree with lightness. In Fig. 1, the shaded gray patch 6

is darker than the illuminated black patch 5, but it appears

brighter as well as on a lighter surface. Such an intimate

connection between brightness and lightness makes bright-

ness modeling inseparable from lightness modeling.

Existing models can be roughly divided into two camps

with respect to the Helmholtz-Hering debate [11]. While

the Hering camp seeks a low-level physiological cause (e.g.,

lateral inhibition [8], multiscale filtering [4]), the Helmholtz

camp seeks a high-level cognitive cause, in an attempt to re-

cover reflectance from luminance with unknown illumina-

tion (e.g., Retinex [13, 9], intrinsic images [3, 2, 19, 17]).

Gestalt theory, emphasizing mid-level perceptual organi-

zation, challenged Hering’s sensory theory and Helmholtz’s

cognitive theory, in a series of devastating crucial experi-

ments (Fig. 15) that turned the field upside down [7].

There are also models focusing more on replicating the

1



intensity I edge E differences (O,C) brightness B difference B − I

1. edge detection 2. brightness ordering 3. angular embedding

Figure 3. Model overview. 1) Pairwise edges E in the intensity image I are detected by a pixel-centric edge detector. 2) Pairwise brightness

ordering O is established with confidence C based on E, I and its smoothed version Iσ . 3) Global brightness ordering B is computed as

the angular embedding of pairwise measurements (O, C). Grays of equal intensity exhibit different brightness desired by the illusion.

neurodynamics of the human visual system without clear

computational objectives [8, 12], or establishing mathemat-

ical frameworks without specific features [6].

We approach brightness, not as a by-product of lightness

computation, but as a pure modeling problem which must

account for brightness illusions. Given an intensity image

I , we output a brightness image B such that B(a) > B(b)
when pixel a appears brighter than b, even if I(a) ≤ I(b).

Our challenge is that brightness illusions such as Fig. 2

are long-standing puzzles in human vision research. There

is no coherent verbal explanation for their seemingly con-

tradictory effects. Simultaneous contrast (SC) says a lighter

surround darkens the center. White argues it could also as-

similate and brighten the center. Anti-snake shows that SC

can be annihilated by simply zigzagging the boundaries of

the surround. Snake argues that adding a few remote flanks

can overcome the annihilation and make SC even stronger.

L D

a: simultaneous contrast (SC)

D

L

S

S

L

D

b: White c: Anti-snake d: Snake

Figure 2. Basic illusions. Each test patch is a neutral gray (0.5)

surrounded by darkgray 0.25, lightgray 0.75, black 0, or white

1. Identical test patches in the same image could appear lighter

(L), or darker (D), or the same (S). These illusions have not been

convincingly explained individually or reconciled collectively.

Brightness perception is global brightness ordering,

where brightness judgement between two pixels needs only

their ordering numbers, not any others’. Local brightness

ordering is often easy to establish: For adjacent pixels a and

b, if intensity has I(a)>I(b), brightness must have B(a)>
B(b). The puzzle then becomes: If local brightness order-

ing is consistent with (global) intensity ordering almost

everywhere in the image, how come global brightness

ordering is not the intensity itself? Any brightness model

thus must address 3 key issues.

1. Feature. Where and how local brightness ordering be-

comes inconsistent with intensity? We discover that

(Section 2) this happens at edges, with corners or high

curvature places introducing more inconsistency than

lines. Local brightness ordering for adjacent pixels is

measured by jarring intensity differences at two scales:

fine scale for interiors and coarse scale across edges.

These short-range cues enable brightness illusions.

2. Aperture. How can such an inconsistency at very few

local areas extend to the entire image? Our idea is that

local measurements do not have the same level of con-

fidence. Local brightness ordering for distant pixels

adopt intensity differences of higher confidence, which

tend to originate from corners. These long-range cues

reinforce brightness illusions.

3. Integration. How can multiple local brightness order-

ings yield a global brightness ordering? We propose

angular embedding, a new and better alternative to LS

[5], NCUTS [16, 20] and LLE [15], for finding a global

ordering that maximally fulfills these local orderings

in accordance with their confidence levels. The global

brightness ordering realizes brightness illusions.

Brightness perception is thus analogous to motion per-

ception, where local motion cues, least ambiguous at cor-

ners, need to be integrated to yield a global motion percept.

Our model has 3 steps (Fig. 3). It first requires the de-

tection of edges in the presence of junctions, for which we

develop a pixel-centric edge detector (Section 5). We then
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derive local brightness ordering and its confidence between

pairs of (adjacent and distant) pixels (Section 3). Integrat-

ing these pairwise orderings with angular embedding yields

a global brightness ordering (Section 4). We present our

results on illusions in Section 6, and conclude in Section 7.

2. Key Insight from Simultaneous Contrast

Brightness is so puzzling that there has not even been a

satisfactory account for the SC illusion alone (Fig. 2a).

a: scale too small b: scale just right c: scale too large

Figure 4. Center-surround filtering of the intensity image produces

a result that correlates with brightness only at the right scale. The

filter is simply the difference of Gaussians: G(x, σ)−G(x, 2σ).

The textbook explanation of center-surround filtering re-

quires the right scale to produce a result that roughly cor-

relates with brightness (Fig. 4b). Too small a scale creates

halos along boundaries and no difference between interiors

(Fig. 4a); too large a scale washes out the patches and op-

posite brightness conclusions can be drawn (Fig. 4c).

For the gray in SC to appear brighter on black than on

white, the gray-black and gray-white contrast must be en-

hanced with respect to the black-white contrast (Fig. 5a).

One way to achieve this, since gray-black or gray-white has

a smaller contrast than black-white, is to enhance small dif-

ferences. This selective enhancement by size explains SC,

but not double-decrement SC [7] (Fig. 5b).

intensity image derivative integrated
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a: Selective enhancement is necessary for SC
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b: Selection by size is wrong for double-decrement SC

Figure 5. SC must come from enhancing testpatch-surround differ-

ences with respect to surround-surround differences (Row 1), and

this cannot be achieved by enhancing small differences, which ex-

plains SC but not double-decrement SC (Row 2). Columns 1-3 are

images, derivative profiles along the middle horizontal lines, and

profiles upon integrating the derivatives. Light gray for intensity,

dark gray for brightness. In Row 2, both patches are decrements to

their surrounds, and the left still appears lighter. Enhancing small

differences wrongly predicts that the left patch appears darker.

1

2

a: corners and lines b: line c: corner

Figure 6. Intensity differences are enhanced around corners at a

coarser scale. a) Circles and crosses mark respectively corners and

lines in the slightly blurred SC image. b-c) Local patches at line 1

and corner 2 marked in a respectively. Adjacent pixels (black dots)

across (red) corner edges have larger intensity differences (thicker

yellow lines) than those across (blue) straight line edges.

Our insight is that local intensity differences change

at different rates with the scale, and the right type of

enhancement emerges at a coarser scale across edges.

At a slightly coarser scale, while the intensity differences

across a line remain uniform and proportional to their fine-

scale counterparts, they increase around a corner. This rela-

tive enhancement is exactly what SC needs (Fig. 6).

Our way to achieve the selective enhancement of Fig. 5a

is therefore not by the size of edges, but by the geometry

of edges. The geometry is nevertheless not explicitly ana-

lyzed, but implicitly encoded in coarser-scale intensity dif-

ferences.

3. Pairwise Brightness Ordering

We establish local brightness ordering O and its confi-

dence C, based on detected edges. For image I of n pixels,

En×n is a binary edge indicator: E(a, b) = 1 if an edge

exists between adjacent pixels a and b.

3.1. Rationale and Short­Range Cues

Local brightness ordering O between adjacent pixels is a

mixture of intensity differences at two scales: coarse scale

∆Iσ in the presence of an edge, and fine scale ∆I in the

absence of an edge. Its confidence C increases with the

edge magnitude, and 0 in the absence of an edge.

ordering: O = ∆Iσ · E + ∆I · (1 − E) (1)

confidence: C = |O| · E (2)

∆f denotes local differences of f : ∆f(a, b) = f(a)−f(b),
∀a, b. Iσ is I smoothed with a Gaussian with a (fixed) small

standard deviation σ, and scaled such that ∆Iσ(a, b) =
∆I(a, b) for a, b separated by a step edge (Fig. 6b).

The presence of edges alters local measurements. While

this is motivated from the computational necessity of trans-

forming intensity into brightness (Fig. 5a), it can be under-

stood as discounting ambient illumination across adjacent

surfaces, which is not so perceivable on the same surface.

A light surface abutting a dark one in a real scene is often

seen with a luminance transition, as ambient lighting cannot
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a: abrupt transition b: realistic shaded transition

Figure 7. Realistic depiction requires value transition even across

sharp boundaries. a) Daddi: Madonna and Child, Tempera on

Canvas, 1347. b) Caravaggio: Boy with a Basket of Fruit, Oil on

Canvas, 1593. The light-dark transition in the circled area is more

abrupt in a than in b, which shows convincing depth and volume.

drop abruptly. Fig. 7 is a case in point: depictions with

abrupt transitions across depths look disturbingly fake.

We formalize the rationale of our local brightness order-

ing as follows. Lighting L varies relatively slowly and its

variation is perceived only at edges E and consequently dis-

counted from brightness B.

From B + L = I (3)

For E = 0, assuming ∆L = 0, we have ∆B = ∆I; (4)

For E = 1,∆Bσ + ∆Lσ = ∆Iσ, (5)

assuming: ∆B = ∆Bσ, ∆Lσ = 0, (6)

we have: ∆B = ∆Bσ = ∆Iσ − ∆Lσ = ∆Iσ. (7)

That is, O = ∆B = ∆Iσ · E + ∆I · (1 − E). (8)

3.2. Aperture and Long­Range Cues

Given O and C for adjacent pixels, we extend them to

pixels a, b at distance d(a, b) > 1, connected through path

P = (P1, P2, . . . , Pn+1), with a = P1, ..., Pn+1 = b:

O(P ) =
∑

t
O(Pt, Pt+1) (9)

C(P ) = maxt C(Pt, Pt+1) (10)

However, different P ’s for the same (a, b) can result in dif-

ferent O(P )’s, since O comes from intensity at two scales

(Eqn. 1). This is not simply a 2D integrability problem for

noisy signals [5, 10], but a modeling problem where signals

are overwhelmed by structured “noise”. It is the aperture

problem frequently encountered in computer vision.

The challenge is to resolve inconsistency over a longer

range so that the very few brightness cues enabled at cor-

ners and junctions become stronger than the majority of

cues which agree with the non-illusion outcome: B = I .

Junction study reveals two essential resolution rules:

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

a

b

m
P ∗

b b b

b b b

b b b

a

b

b b b

b b b

b b b

a

b

a: junction b: general neighbourhood

c: initialized d: corrected e: propagated

Figure 8. Resolving inconsistency from multiple paths. Row 1)

We have yellow center path Q, green side path P , red edges and

blue non-edges. a) Winning path P ∗ at a T-junction for pixels

a, b has the largest single-edge difference. It is used to scale

O(a, m) and O(m, b) so that path a, m, b and P ∗ result in the

same O(a, b). b) Multiple side paths are used to update O(a, b)
for pixel a and its neighbour b separated by an edge, shown here

at 90◦ and −45◦. Row 2) O(a, b) is visualized from a towards b

in red (positive) or green (negative) lines, darker lines for smaller

differences. The elevated (c) diagonal contrast of the gray pixel at

the T-junction is scaled down (d) by the black-white difference of

path P ∗ in a, and the correction is propagated (e) to other pixels.

1. Paths made with edges of the same sign dominate;

2. Paths made with edges of higher confidence dominate.

We select winning path P ∗ based on these two principles

and use O(P ∗) and C(P ∗) to define O(a, b) and C(a, b).
Formally, let S be the sign of differences at edges, i.e.

S = sign(O) · E. Let Q be the shortest path that connects

a and b. Initializing O(a, b) = O(Q) and C(a, b) = C(Q),
we examine neighbouring path P ’s to update O, C:

O(a, b) = O(P ∗) (11)

C(a, b) = C(P ∗) (12)

P ∗ = arg max
E(P ) = |S(P )|
Cmin(P ) ≥ C(Q)

Csum(P ) (13)

where: E(P ) =
∑

t
E(Pt, Pt+1) (14)

S(P ) =
∑

t
S(Pt, Pt+1) (15)

Csum(P )=
∑

t
C(Pt, Pt+1) +1−E(Pt, Pt+1) (16)

Cmin(P ) = mint C(Pt, Pt+1) (17)

We use the same update rule in two scenarios (Fig. 8).

One is at junctions, where O(P ) from two edges pointing

in the gradient direction, i.e., path P = (a,m, b), is larger

than O(P ∗) from a single edge (Fig. 8c). The confidence

C(P ∗) is larger, thus O(a,m) and O(m, b) are scaled down
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(Fig. 8d) to yield O(P ) = O(P ∗). The other scenario is to

update each pixel’s local ordering with its edge-separated

neighbours. This process helps propagate the correction

initiated at junctions (Fig. 8e), and it is recursively applied

with an increasing neighbourhood radius to obtain consis-

tent long-range cues that reinforce brightness illusions.

4. Angular Embedding

Now we have pairwise orderings in (arbitrary) size O
and (nonnegative) confidence C for n elements. We assume

C(a, b) ≤ 1, C(a, a) = 1, O(a, a) = 0, ∀a, b.

The goal of an embedding is to find a global ordering

of the n elements where pairwise differences in the global

order match those pairwise local ordering measurements.

While conventional embedding realizes the order in

the positions of points on a line, our angular embedding

(AE) realizes it in the angles of points on a unit circle.

AE is a direct extension of LLE [15] from linear value in-

terpolation to arbitrary neighbour relationships. AE is more

robust and efficient than Poisson diffusion or LS [5], as it is

a nonlinear criterion with eigensolutions. AE is more ver-

satile than NCUTS with attraction and repulsion [20], as it

handles measurements with arbitrary size and confidence.

4.1. Representation and Optimality Criterion

The goal of AE is to find angles, θ, that fulfill pairwise

orderings O and C (Fig. 9). Point a on the unit circle can

be written as a complex number with its angle θ(a):

z(a) = ejθ(a), j =
√
−1 (18)

Point b projects a’s position to be ej(O(a,b)+θ(b)) with con-

fidence C(a, b). The consensus of a’s position from b’s can

be estimated as a confidence-weighted vector average:

z̃(a) =
∑

b
C̃(a, b) · ejO(a,b) · z(b) (19)

C̃(a, b) =
C(a, b)

∑

b C(a, b)
(20)

Since
∑

b C̃(a, b) = 1 and C̃(a, a) > 0, we have |z̃(a)| ≤
|z(a)| = 1. It is straightforward to show that:

|z(a) − z̃(a)| = 0 (21)

⇔ |z̃(a)| = |z(a)| = 1 (22)

⇔ O(a, b) + θ(b) = θ(a),∀b ∈ {b : C(a, b) > 0}. (23)

That is, z(a) and z̃(a) coincide if and only if every local

ordering with positive confidence is perfectly fulfilled. |z −
z̃| is thus a good indicator of the quality of an embedding.

We formulate the AE criterion in terms of minimizing

the disagreement or maximizing the agreement between z
and z̃ for all a’s, weighted by their total confidence. The

two objectives are dual and thus equivalent:

b

1

j

0

b z(b)

bz(a)

bz(c)

b z(b)ejO(a,b)bz(c)ejO(a,c)

C
(a

, b
)C

(a
, c)

b z̃(a)

O
(a, b)

O(a,
c)

θ(b)

Figure 9. AE places elements on the unit circle such that their an-

gular displacements best match local orderings. Consider element

a placed at z(a). a’s neighbour b, based on its position z(b) and

difference O(a, b) with a, projects a to be z(b)ejO(a,b) with confi-

dence C(a, b), so does neighbour c. The neighbourhood expecta-

tion of a’s position z̃(a) is in disagreement with z(a). A desirable

embedding minimizes the total disagreement for all a’s.

disagreement: εd =
∑

a
D(a) · |z(a) − z̃(a)|2 (24)

agreement: εa =
∑

a
D(a)

(

|z(a)|2−|z(a) − z̃(a)|2
)

(25)

where: D(a) =

∑

b C(a, b)
∑

a,b C(a, b)
(26)

hence: εd + εa =
∑

a
D(a) = 1 (27)

4.2. Matrix Formulation

We rewrite AE in a matrix form. Let ′ denote conjugate

transposition, • the matrix Hadamard (entrywise) product,

eX the entrywise exponential function of matrix X , Diag(·)
the diagonal matrix formed from its vector argument, In the

n × n identity matrix, and 1n the n × 1 vector of 1’s.

minimize εd(θ;O,C) = z′Wz (28)

⇔ maximize εa(θ;O,C) = z′(D − W )z (29)

subject to z = ejθ (30)

where W = (In − M)′D(In − M) (31)

M = Diag(C1n)−1C • ejO (32)

D = Diag(C1n · (1′nC1n)−1). (33)

W is a Hermitian error matrix; M is a measurement matrix

that combines two aspects of a local measurement, size and

(normalized) confidence, in one complex number, and D is

a normalized total-confidence degree matrix.

The criterion εd in Eqn. 28 and the error matrix W in

Eqn. 31 resemble LLE’s [15]. It is not surprising, since

Eqn. 19 formally extends LLE’s scalar average to AE’s vec-

tor average. Decoupling confidence C from size O allows

a principled normalization for AE, which results in a dual

objective, εa in Eqn. 29, with a sound and robust solution.
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4.3. Eigenvector Solution

The optimal embedding for Eqns. (29-30) satisfies:

θ∗ = ∡z∗, z∗ = arg max
|z|=1n

z′(D − W )z (34)

| · | denotes the entrywise magnitude of its argument. Relax-

ing |z| = 1n to its necessary condition z′Dz = 1, we have

a Rayleigh quotient maximization problem. The global op-

timum is the leading eigenvector of (D−W,D):

z∗ ≈ arg max
z′Dz=1

εa(z) = V1, εa(z∗) = λ1 (35)

P̃ · Vk = λk · Vk, ∀k, λ1 ≥ . . . ≥ λn (36)

P̃ = D−1(D − W ), (37)

where P̃ is akin to the generalized affinity matrix in [20],

but admits cues other than attraction and repulsion.

Brightness B as the AE optimum for O and C is thus:

B = ∡ leading-eigenvector-of (D − W,D) (38)

5. Pixel-Centric Edge Detection

Now we come to edge detection, which is crucial for our

model. Edge detectors often fail in scenarios that violate the

single step edge assumption (Fig. 10).

Existing methods assume a pixel is an isotropic Gaussian

and an edge is where the intensity difference dominates in

both forward and backward directions. Fig. 10 shows that,

e.g. in a highlight, pixels on the left have little to do with the

edge on the right; in an X junction, pixels in one quadrant

have little to do with edges in the other 3 quadrants.

Therefore, some sense of pixel grouping must be built

into the earliest stage of edge detection. Our idea is that:

1. Each pixel is a small Gaussian modified by local similarity;

2. Edge sensitivity varies according to local differences;

3. An edge is a gradient discontinuity along either direction.

step diffuse ramp ridge highlight junction

Figure 10. Intensity and spatial variations can cause displaced or

missed edge detections. Rows 1-3: Images, intensity profiles

along the middle horizontal lines, and edges by a Canny detector.

Cases 1-5 are essentially 1D problems. Case 6 is a 2D problem: As

multiple edges meet at a junction, weaker edges are easily missed.

b b b b

a
bu

v

gradient discontinuity from a to b?

gradient discontinuity from b to a?

Figure 11. Our edge detector treats gradient discontinuity in two

directions separately. E(a, b)=1 if the average intensity in a small

neighbourhood changes sharply over u→a→b or v→b→a.

Consider Fig. 11. Pixel a tries to decide if an edge ex-

ists between itself and its neighbour b. It evaluates whether

there is a discontinuity in the average intensity Ī over u→
a→ b or v → b→ a, the average computed with weights A
dependent on distance d and intensity difference |∆I|. If it

changes monotonically, and the difference ∆Ī(a, b) is much

larger than ∆Ī(u, a) or ∆Ī(b, v), a concludes E(a, b) = 1.

Let G(·, σ) be a Gaussian with mean 0 and standard de-

viation σ. There is a discontinuity over u→a→b if:

monotonicity: ∆Ī(u, a) · ∆Ī(a, b) > 0 (39)

dominance: |∆Ī(a, b)| > α · |∆Ī(u, a)| + β (40)

∆Ī(a, b) =

∑

p(A(a, p) − A(b, p)) · I(p)
∑

p |A(a, p) − A(b, p)| (41)

A(a, p) =
G(∆I(a, p), σe) · G(d(a, p), σd)

∑

p G(∆I(a, p), σe) · G(d(a, p), σd)
(42)

adaptive intensity sensitivity: σe = ∆I(a, b)/3 (43)

where σd dictates the neighbourhood size, and α and β are

magnitude thresholds for determining discontinuity.

This pixel-centric gradient discontinuity detection can be

further improved with contextual reasoning such as bilateral

gap completion. Note that all we need is edges, which are

simply difficult to detect at junctions (Fig. 12). Junctions

are neither detected separately nor identified explicitly.

a: Canny with threshold 0 b: pixel-centric edge detector

Figure 12. Pixel-centric edge detection does not miss edges around

junctions. a) Canny edge detector labels a pixel as an edge or

not; nearby edge pixels are linked. It fails to detect many weaker

edges even with threshold 0. b) Our detector finds edges from

each pixel’s point of view in 8 directions. A small line is drawn

for every edge between a pixel and its neighbour.
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6. Results and Discussions

Given an intensity image I , we first use our pixel-centric

edge detector to find pairwise edges E. We then derive pair-

wise brightness ordering O and confidence C, from which

we compose Hermitian error matrix W and degree matrix

D. We compute the leading eigenvector of (D−W,D) and

obtain brightness B in the angles of its components.

We scale the range of B to match that of I , i.e., B and

I have the same extreme values of e.g. 0 and 1.

We show results on various junctions (Fig. 13), basic

(Fig. 14) and additional brightness illusions (Figs. 15-16).

The distinction between brightness and intensity is clearer

in their difference images or superimposed profile plots.

n-rev-T rev-T n-rev-X s-rev-X d-rev-X

Figure 13. Junction study. Row 1: Intensity I . Row 2: Bright-

ness B. Row 3: Difference B − I . There is no illusion induced

by reversing T or double-reversing X, but a little by non-reversing

T, more by single-reversing X, and most by non-reversing X. All

these effects can be singly understood as deviation along the in-

tensity gradient direction (marked by arrows in Row 1).

In Fig. 13, grays need to establish themselves with re-

spect to black and white, which have the lowest and high-

est brightness. In the non-reversing T, the gray is angled

between black and white. Since there is more white than

black, the average intensity difference is smaller for gray-

white than for gray-black, causing the gray to be closer to

white and thus appear lighter. In the reversing T, the gray

is not in the way of, but side by side with an equal amount

of black and white. Its brightness stays in the middle → no

illusion. Similar reasons hold for 3 types of X-junctions.

Our junction study provides a computational account for

brightness effects from junctions [18]. In particular, trans-

parency, haze, or clear atmosphere can be predicted without

factoring luminance into illuminance and reflectance [1].

Transparency maximally alters brightness from inten-

sity. It is mediated by non-reserving X-junctions, where

opposing black and white reduce the difference between the

two sandwiched grays, making the light-gray next to white

Figure 14. Brightness results for Fig. 2, shown in brightness B

and difference B − I . See White in Fig. 3. Snake has the largest

illusion, with double effects from the corners of test patches and

non-reversing X junctions, while Anti-snake has no illusion as bal-

anced local enhancements from SC do not alter the global ranking.

Figure 15. Results for Koffka ring (Row 1) and Benary illusions

(Row 2), shown in intensity I , brightness B, and difference B−I .

In Benary, arrows mark stronger enhancement for the left triangle.

darker and the dark-gray next to black lighter, their distinc-

tion increased. Haze also makes brightness different from

intensity, but to a lesser extent. It is mediated by single-

reversing X-junctions, where side-by-side black and white

also reduce the difference between abutting grays, giving

a more pronounced local contrast between hazy grays and

clear black-and-white. Clear atmosphere does not make

brightness any different from intensity. It is mediated by

double-reversing X-junctions of no change effect at all.

The characteristic local brightness effects of corners and

junctions can explain many illusions such as SC, White,

Snake (Fig. 14), Koffka ring (Fig. 15), double-decrement

SC, Articulation, Crisscross, and COCE (Fig. 16).

While brightness can be primarily understood as the

consequence of local brightness ordering deviating from

global intensity ordering in its gradient direction, it can

only be fully appreciated as a Gestalt.

As a global ranking, it is not the absolute sizes but the

relative sizes of local contrast that matter. 1) Anti-snake has

the SC illusion completely turned off (Fig. 14), not because
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Figure 16. Brightness results for double decrement SC (Row 1),

Articulation (Row 2), Crisscross (Row 3), and COCE (Row 4),

shown in intensity I , brightness B, and their profiles (gray for

intensity, black for brightness) along the middle horizontal line

there is no local enhancement from zigzagging boundaries,

but because the gray’s differences to the two extremes,

black and white, are equally large so that they stay remain

in the middle rank. 2) For Benary (Fig. 15), the triangle in-

side black is lighter than the one next to black, because of

the larger enhancement for the former, not because of a lack

of enhancement for the latter. 3) Articulated surrounds not

only introduce more junctions for local enhancement, but

also force all the grays to spread out on the ranking scale,

making each more distinctive (Fig. 16).

7. Summary

We model brightness as an emergent global order from

intensity differences at two (fixed) scales mixed according

to edges, identified by our pixel-centric edge detector.

Brightness is modeled not by modifying the size of local

comparisons as Retinex [13, 9], or by requiring edge classi-

fication or segmentation as the selective integration model

[14], or by knowing the right scale as the multiscale filter-

ing model [4], but by having local comparisons dependent

on the geometry of edges.

We explain a variety of brightness illusions with a single

algorithm and a clear intuition. Brightness of a pixel can be

understood locally as its intensity deviating in the gradient

direction and globally as finding its rank relative to others,

particularly the lightest and darkest ones.

We propose AE as a more robust, efficient, and versatile

method to integrate pairwise comparisons than LS, LLE,

and NCUTS. AE will thus find its use in many areas.
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