Inferring Spatial Layout from A Single Image via Depth-Ordered Grouping

Stella X. Yu, Computer Science, Boston College

Hao Zhang, Computer Science, UC Berkeley

Jitendra Malik, Computer Science, UC Berkeley

Input: A Single Image of An Indoor Scene

Task: Depth-Ordered Pixel Grouping

Visualization: 3D Scene from A New Viewpoint

Results: Scene Partition w. Depth-Ordered Planes

Results: Scene Partition w. Depth-Ordered Planes

Line-Based Depth-Ordered Grouping Model

Talk Outline

- ▶ Grouping Cues from 2D Lines to 3D Line Clusters
- Grouping from 3D Lines to 3D Quadrilaterals
- Grouping Cues from 3D Quadrilaterals to 3D Planes
- Spectral Clustering As the Core Grouping Engine
- Literature Review
- ► Further Research

Challenge: Occlusion, Clutter, Weak Perspectivity

Ambiguity of Vanishing Points

Grouping Cues from 2D Lines to 3D Line Clusters

$$egin{align*} A_{-} &= \exp\left(-rac{d_{h}^{2}}{2\sigma_{c1}^{2}} - rac{d_{v}^{2}}{2\sigma_{c2}^{2}} - rac{1-\cos^{2} heta}{2\sigma_{c3}^{2}}
ight) \ A_{\parallel} &= \exp\left(-rac{d^{2}}{2\sigma_{p1}^{2}} - rac{(1-\operatorname{overlap})^{2}}{2\sigma_{p2}^{2}} - rac{1-\cos^{2} heta}{2\sigma_{p3}^{2}}
ight) \ R_{\perp} &= \exp\left(-rac{d^{2}}{2\sigma_{c1}^{2}} - rac{\cos^{2} heta}{2\sigma_{c2}^{2}}
ight) \end{split}$$

Grouping from 3D Lines to 3D Quadrilaterals

Coplanarity between 3D Quadrilaterals

Depth Ordering of 3D Points Along A Direction

Depth Ordering between 3D Quadrilaterals

Spectral Clustering w. Attraction & Repulsion

Eigensolution of $(A - R + D_B, D_A + D_B)$, Yu & Shi, CVPR 2001

Spectral Clustering w. Attraction & Depth Ordering

Eigensolution of $(A + \sqrt{-1} \cdot R, D_A + D_R)$, Yu & Shi, ICCV 2001

Review: Different Approaches from 2D to 3D

- Geometrical Reconstruction
- ► Shape-from-X
- Rule-based Generative Approach
- Statistical Learning

► Depth-Ordered Grouping

Reconstruction from Calibration & User Input

Modeling and Rendering Architecture from Photographs

Debevec, Taylor, and Malik 1996

Original photograph with marked edges

Recovered model

Model edges projected onto photograph

Synthetic rendering

Shape-from-X with Applicable Cues

Generative Model on Limited Spatial Relations

Han & Zhu: Bottom-up / Top-down Image Parsing by Attribute Graph Grammar, ICCV, 2005

Statistical Associations of Feature and Context

Figure 1: Geometric context from a single image: ground (green), sky (blue), vertical regions (red) subdivided into planar orientations (arrows) and non-planar solid ('x') and porous ('o').

Hoiem, Efros, & Hebert: Geometric Context from A Single Image, ICCV, 2005

Line-Based Depth-Ordered Grouping Model

Further Research

- Group Lines into Quadrilaterals
- ▶ Relative Depth Ordering
- Cross Constraints on Depth and Extent
- Concurrent Grouping
- Vocabulary of Lines for Depth and Volume

Vocabulary of Lines For Depth and Volume

Drawings by Mandy Sakamoto, © Art and Visual Perception Class, Yu & Mulhern, Boston College, Fall 2007