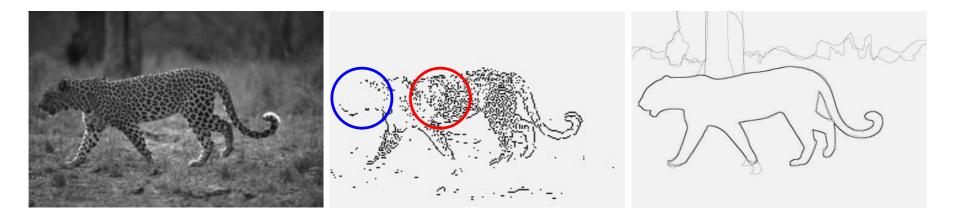
Segmentation Using Multiscale Cues

Stella X. Yu

Computer Science Division, UC Berkeley



segmentation: from edges to boundaries

<u>Multiscale</u> holds the key to overcoming two seemingly irreconcilable difficulties:

false positive: texture false negative: illusory contours

Basic Idea

Traditional approaches:

1. One method for *one* type of phenomena

brightness:	thresholding, morphology, level-set (Leventon, Faugeraus,)
curves:	boundary completion (Mumford, Shah, Williams, Jacobs,)
texture:	texture segmentation (Tuceryan, Jain,)

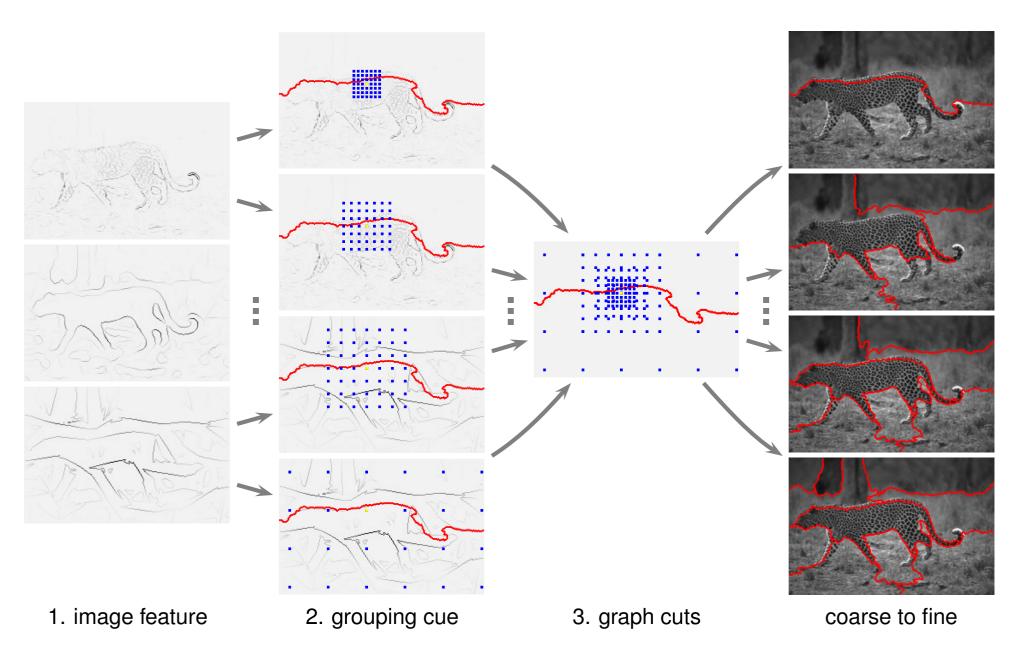
2. One method for *all* types of phenomena: complexity \uparrow , flexibility \downarrow

more modules:biologically motivated, facade theory (Grossberg, ...)more models:generative, pattern theory (Grenander, Zhu, Mumford, Yullie, ...)more features:discriminative, graph cuts (Shi, Malik, Leung, Belongie, ...)

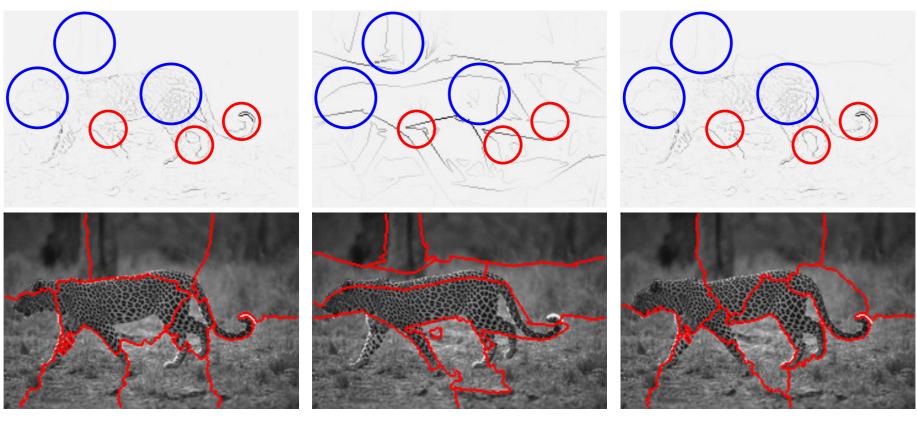
This work advocates:

one feature:	multiscale edges
one grouping cue:	intervening contours
one integration criterion:	average cuts of normalized affinity

Overview: Segmentation with Multiscale Edges



1. Image Feature: Multiscale Edges



small scale

large scale

optimal scale

1. Edges of small and large scales complement each other

small \Longrightarrow follow curves precisely; large \Longrightarrow ignore textural variation

2. Resolving scale ambiguity at image feature level is premature

optimal only for step edges in isolation; ill-defined at junctions, curves, abutting regions of various scales

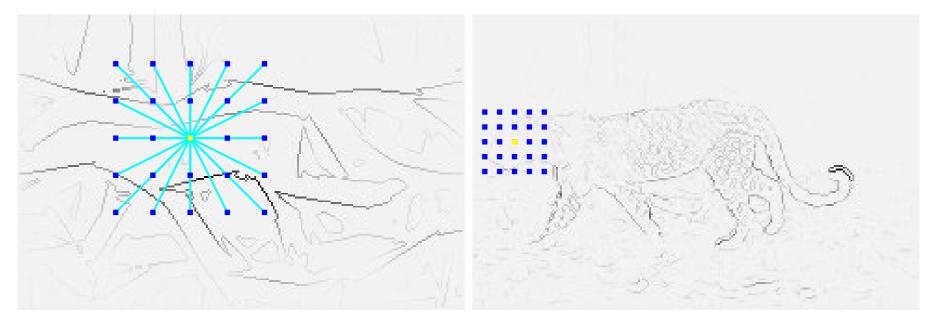
2. Pixel Grouping Cue: Multigrid Affinity

Intervening contour casts edges to grouping cues between their pixel supports.

$$A_{IC}(i,j) = \exp\left(-\frac{\max_{t \in \mathsf{line}(i,j)} \mathsf{edge-strength}(t)}{\sigma}\right)$$

Its range of applicability is bounded by leakage and localization uncertainty.

 $W(i, j; grid) = A_{IC}(i, j), \quad distance(i, j) \in [certainty distance, neighbourhood radius]$



lowerbound from localization uncertainty

upperbound from leakage

3. Criterion: Average Cuts of Normalized Affinity

goodness of grouping

 $= \frac{1}{K} \sum_{l=1}^{K} \frac{\sum_{j \in \text{group } l} \text{ proportion of node } j\text{'s links that are contained in group } l}{\text{number of nodes in group } l}$ $= \frac{1}{K} \sum_{l=1}^{K} \text{average normalized affinity for group } l$

Properties:

duality: minimum cuts between groups \iff maximum connections within groups efficiency: near-global optima through eigendecomposition

An analogy in democracy:

why normalized affinity:one person one vote on the same 0-1 scale, rich or poorwhy average cuts:populous states do not dominate

Algorithm

Given: image I of N pixels,

filter parameter ρ , affinity parameter σ , neighbourhood radius r, grid spacing parameter g, number of segments K

Step 1: Compute edges at multiple scales.

 $E(\rho) = (I * F_o(\rho))^2 + (I * F_e(\rho))^2.$

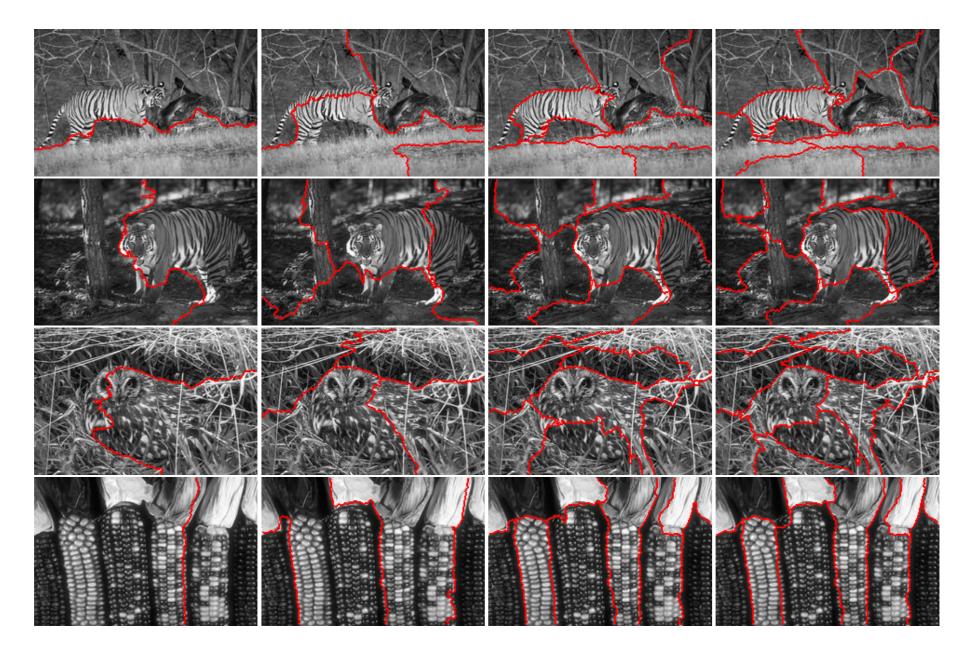
Step 2: Compute pixel affinity at multiple grids.

 $\begin{array}{l}t=0\\ \text{For every scale }\rho,\\ d=\text{certainty distance of filter }\rho\\ \text{For every grid spacing }g,\\ t=t+1\\ W_t(i,j)=A_{IC}(i,j), \, \text{distance}(i,j)=k\cdot g\cdot d,\,k\in[1,r],\,j=1:N.\end{array}$

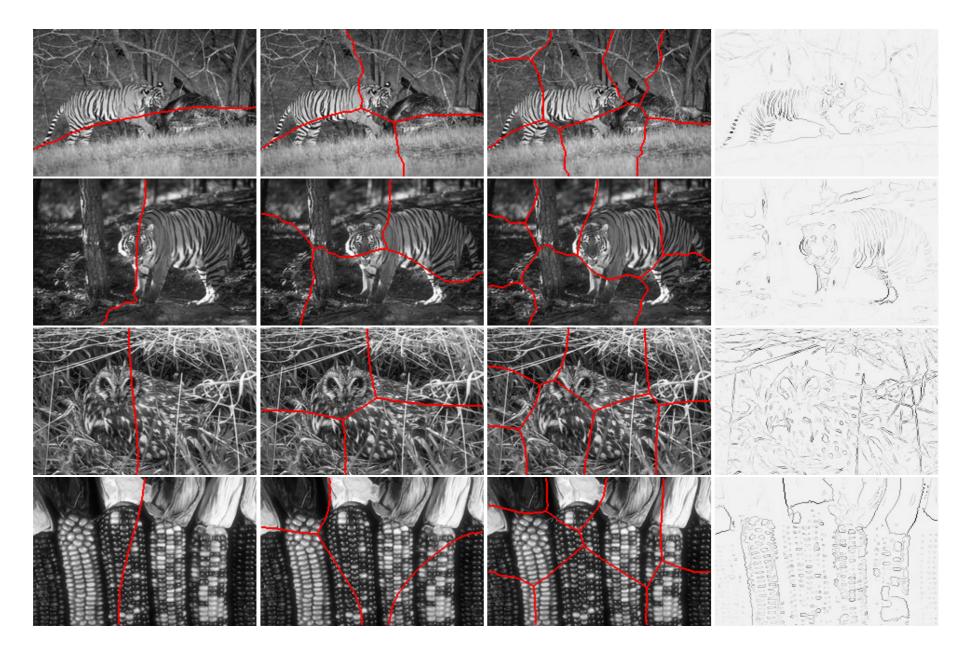
Step 3: Compute average cuts of normalized affinity.

 $A = W_1 D_1^{-1} + \ldots + W_M D_M^{-1}$ $\bar{A} = A + A^T$ Solve for the first *K* eigenvectors *V* of \bar{A} Obtain a discrete segmentation from *V*.

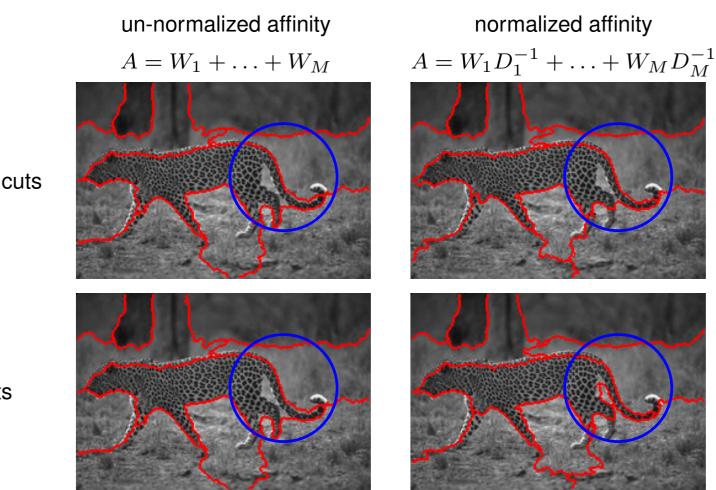
New: Average Cuts with Multiscale Edges



Old: Normalized Cuts with Optimal Edges



Advantages over Normalized Cuts Criterion



normalized cuts

average cuts

Average cuts of normalized affinity criterion has two advantages:

- 1. Straightforward interpretation of a simultaneous cut through multiple graphs.
- 2. Individual normalization of affinity promotes grouping cues according to scale.

Results on Articulated Body Configurations

Summary

Key insights:

- 1. Neither edges nor boundaries are single-scale phenomena.
- 2. Edges at all scales should be used without competition in scale-space.
- 3. Integration across scales must take the reliability of cues into account.
- 4. Multiscale edges are all we need to treat both texture and illusory contours.

New graph cuts approach to segmentation:

- 1. one feature, one cue, one criterion
- 2. Coarse to fine segmentations.
- 3. Simplified multiscale interactions.
- 4. Numerically fast and efficient.

Coming up:

hard examples on illusory contours (optimal scale, this work, new work)

