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A principled account on finding discrete near-global optima
for spectral clustering methods.
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K-Way Normalized Cuts
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A Principled Solution to Normalized Cuts
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NP complete even for K = 2 and planar graphs

Fast solution to find near-global optima:

1. Find global optima in the relaxed continuous domain
optima = eigenvectors × orthonormal transforms

2. Find a discrete solution closest to continuous optima
closeness = measured in L2 norm between solutions

3



Solution Diagram
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Final solution: (X∗(2), X̃∗(2))
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Representation

• Partition matrix

X = [X1, . . . , XK ]

• Maximize

ε(X) =
1

K

K∑

l=1

links(Vl, Vl)

degree(Vl)
=

1

K

K∑

l=1

XT

l
WXl

XT

l
DXl

• Subject to

binary X ∈ {0, 1}N×K

exclusion X 1K = 1N
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Step 1: Find Continuous Global Optima

• Eigensolution (V, S) that optimizes:

maximize ε(Z) =
1

K
tr(ZT WZ)

subject to ZT DZ = IK

• Scaled partition matrix Z:

Z = f(X) = X(XT DX)−
1

2

X = f−1(Z) = Diag(diag−
1

2 (ZZT ))Z

• Set of all continuous optima:

{X̃∗R : X̃∗ = Diag(diag−
1

2 (V V T ))V, RT R = IK}
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Step 2: Discretize Continuous Optima

• Find a partitioning closest to continuous optima

minimize φ(X, R) = ‖X − X̃∗R‖2

subject to RT R = IK , X ∈ {0, 1}N×K , X 1K = 1N .

• This bilinear program can be solved iteratively:

1. Given a continuous solution X̃ = X̃∗R∗, solve X∗ by:

X∗(i, l) = istrue(l = arg max
k

X̃(i, k)), i ∈ V.

2. Given a discrete solution X∗, solve R∗ by:

R∗ = ŨUT , X∗T X̃∗ = UΩŨT , Ω = Diag(ω).
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Bipartitioning of A Point Set

Z∗ = [V1, V2] X̃∗ = f−1(Z∗)
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normalize

initialize

refine

converge
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Pixel Similarity based on Intensity Edges

1

2

3

image oriented filter pairs edge magnitudes
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Discrete Near-Global Optima

K = 4 : 0.9901 0.9899 0.9881

a few;
all good
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Multiclass Real Image Segmentation
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Summary

K-way normalized cuts have:
• eigendecomposition for continuous global optima
• bilinear iterations for discrete near-global optima.

New understanding on the eigenvectors:
• a basis for generating all optima
• the first eigenvector is as important
• approximating scaled partition matrices
• K eigenvectors for optimal K-way partitioning.

New understanding on discretization:
• continuous and discrete optima in a pair
• a bilinear program solved by alternating SVD and NMS
• fast, robust, and guaranteed near-global optimality.
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