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for spectral clustering methods.
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K-Way Normallzed Cuts
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A Principled Solution to Normalized Cuts

max knassoc(FV Z linkratio(V;, V;)
l 1

NP complete even for K = 2 and planar graphs

Fast solution to find near-global optima:

1. Find global optima in the relaxed continuous domain
optima = eigenvectors x orthonormal transforms

2. Find a discrete solution closest to continuous optima
closeness = measured in Ly norm between solutions



Solution Diagram
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Final solution: (X*2), x*(2)



Representation

e Partition matrix
X =[X1,..., XK]
e Maximize

1 ihnks vV, V,) 1 f:XlTWXl

- T
l:1 degree(V;) K — X! DX,

e Subjectto

binary X € {0,1}V*&
exclusion X 1g =1y



Step 1. Find Continuous Global Optima

e Eigensolution (V, S) that optimizes:

. 1
maximize £(Z) = - tr(Z1W 7)

subjectto Z'DZ = Iy

e Scaled partition matrix Z-:

N

7 =f(X)=X(X'DX)"
X = £ 1(2) = Diag(diag " 2(22%))Z

e Set of all continuous optima:

{X*R: X* = Diag(diag 2 (VVT))V, RTR=1I)
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Step 2: Discretize Continuous Optima

e Find a partitioning closest to continuous optima
minimize ¢(X,R) = || X — X*R|?

SUbjeCt to R'R= I, X € {O, 1}NXK, X1lg=1y.

e This bilinear program can be solved iteratively:

1. Given a continuous solution X = X*R*, solve X* by:

X*(i,1) = istrue(l = arg max X(i,k)), i€V.

2. Glven a discrete solution X*, solve R* by:
R =0U', Xx*'Xx*=vUQU!, Q=Diagw).
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Bipartitioning of A Point Set
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Pixel Similarity based on Intensity Edges
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Discrete Near-Global Optima

K=4: 0.9901 0.9899 0.9881

a few:;
all good
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Multiclass Real | mage Segmentation
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Summary

K-way normalized cuts have:
e eigendecomposition for continuous global optima
e bilinear iterations for discrete near-global optima.

New understanding on the eigenvectors:
e a basis for generating all optima
e the first eigenvector is as important
e approximating scaled partition matrices
e K eigenvectors for optimal K-way partitioning.

New understanding on discretization:
e continuous and discrete optima in a pair
e a bilinear program solved by alternating SVD and NMS
e fast, robust, and guaranteed near-global optimality.
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