Multiclass Spectral Clustering

Stella X. Yu Carnegie Mellon University

Jianbo Shi University of Pennsylvania

A principled account on finding discrete near-global optima for spectral clustering methods.

K-Way Normalized Cuts \mathbb{V}_3 \mathbb{V}_1 \mathbb{V}_2 $\operatorname{knassoc}(\Gamma_{\mathbb{V}}^{K}) = \frac{1}{K} \sum_{l=1}^{K} \operatorname{linkratio}(\mathbb{V}_{l}, \mathbb{V}_{l})$ max l=1 $\operatorname{kncuts}(\Gamma_{\mathbb{V}}^{K}) = \frac{1}{K} \sum_{l=1}^{K} \operatorname{linkratio}(\mathbb{V}_{l}, \mathbb{V} \setminus \mathbb{V}_{l})$ \min l=1

A Principled Solution to Normalized Cuts

$$\max \quad \operatorname{knassoc}(\Gamma_{\mathbb{V}}^{K}) = \frac{1}{K} \sum_{l=1}^{K} \operatorname{linkratio}(\mathbb{V}_{l}, \mathbb{V}_{l})$$

NP complete even for K = 2 and planar graphs

Fast solution to find near-global optima:

- 1. Find global optima in the relaxed continuous domain optima = eigenvectors \times orthonormal transforms
- 2. Find a discrete solution closest to continuous optima closeness = measured in L_2 norm between solutions

Solution Diagram

Representation

• Partition matrix

$$X = [X_1, \ldots, X_K]$$

• Maximize

$$\varepsilon(X) = \frac{1}{K} \sum_{l=1}^{K} \frac{\text{links}(\mathbb{V}_l, \mathbb{V}_l)}{\text{degree}(\mathbb{V}_l)} = \frac{1}{K} \sum_{l=1}^{K} \frac{X_l^T W X_l}{X_l^T D X_l}$$

• Subject to

binary
$$X \in \{0, 1\}^{N \times K}$$

exclusion $X \mathbf{1}_K = \mathbf{1}_N$

Step 1: Find Continuous Global Optima

• Eigensolution (V, S) that optimizes:

maximize
$$\varepsilon(Z) = \frac{1}{K} \operatorname{tr}(Z^T W Z)$$

subject to $Z^T D Z = I_K$

• Scaled partition matrix *Z*:

$$Z = f(X) = X(X^T D X)^{-\frac{1}{2}}$$
$$X = f^{-1}(Z) = \text{Diag}(\text{diag}^{-\frac{1}{2}}(Z Z^T))Z$$

• Set of all continuous optima:

$$\{\tilde{X}^*R: \tilde{X}^* = \text{Diag}(\text{diag}^{-\frac{1}{2}}(VV^T))V, \quad R^TR = I_K\}$$

Step 2: Discretize Continuous Optima

• Find a partitioning closest to continuous optima

minimize $\phi(X, R) = ||X - \tilde{X}^* R||^2$ subject to $R^T R = I_K$, $X \in \{0, 1\}^{N \times K}$, $X \mathbf{1}_K = \mathbf{1}_N$.

- This bilinear program can be solved iteratively:
 - 1. Given a continuous solution $\tilde{X} = \tilde{X}^* R^*$, solve X^* by:

$$X^*(i, l) = \operatorname{istrue}(l = \arg\max_k \tilde{X}(i, k)), \quad i \in \mathbb{V}.$$

2. Given a discrete solution X^* , solve R^* by:

$$R^* = \tilde{U}U^T, \quad X^{*T}\tilde{X}^* = U\Omega\tilde{U}^T, \quad \Omega = \text{Diag}(\omega).$$

Bipartitioning of A Point Set

Pixel Similarity based on Intensity Edges

image

oriented filter pairs

edge magnitudes

Discrete Near-Global Optima

K = 4:

a few; all good

0.9899

0.9881

Multiclass Real Image Segmentation

Summary

K-way normalized cuts have:

- eigendecomposition for continuous global optima
- bilinear iterations for discrete near-global optima.

New understanding on the eigenvectors:

- a basis for generating all optima
- the first eigenvector is as important
- approximating *scaled* partition matrices
- *K* eigenvectors for optimal *K*-way partitioning.

New understanding on discretization:

- continuous and discrete optima in a pair
- a bilinear program solved by alternating SVD and NMS
- fast, robust, and guaranteed near-global optimality.