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Why segmentation needs recognition?

Why recognition needs segmentation?

YU, GROSS & SHI: NIPS’02 VS18 – p.2/17



Image segmentation is often object-blind

1. Do not know which regions make up an object.

2. Easily miss object boundaries due to lighting and clutter.
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Object detection is often overwhelmed

(Schneiderman, 02): vasc.ri.cmu.edu/demos/faceindex

1. Tradeoff between false positives and detection rate.

2. Constraints in reducing false detection: increase in classifier complexity and training size.
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Characteristics of false positives

Arm-1 Leg-1 Head Arm-2 Leg-2

1. Lack of high-level part label compatibility.

2. Lack of low-level image feature saliency.
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Overview of our object segmentation
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Representation

Graph: G = (V,E,W ) = (nodes, edges, weights)

Node set: V = Vpixels ∪ Vpatches

Edge set: E = Epixel−pixel ∪ Epatch−patch ∪ Epixel−patch

Weights: W =

[

A CT

C B

]

A: pixel-pixel similarity matrix
B: patch-patch compatibility matrix
C: pixel-patch association matrix

YU, GROSS & SHI: NIPS’02 VS18 – p.7/17



patches

image pixel-patch association object

edges segmentation

evaluation

integration
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Computing pixel-pixel similarity A

A(1, 3) ≈ 1

A(1, 2) ≈ 0

1
2

3

image filters edge magnitudes

A(i, j) = exp
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 , k
¯
= location of k.
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Computing patch compatibility and competition

B(1, 2) ≈ 1

B(10, 5) ≈ 0

7 and 8 cannot both be
parts of the object
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compatibility patches competition

B(p, q) is small if p, q form rare configurations for part labels ṕ, q́:

B(p, q) = exp

(

−
1

2
(p
¯
− q

¯
− µṕq́)T Σ−1

ṕq́
(p
¯
− q

¯
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, p
¯

= location of p.
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Computing pixel-patch association C
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Head detector →

Patch 1

Arm detector →

Patch 2

Leg detector →

Patch 11
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patches expected local segmentation association

C(i, p) =







1, if i is an object pixel of patch p

0, otherwise
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Find low-cost cuts subject to patch competition

YU, GROSS & SHI: NIPS’02 VS18 – p.12/17



Encoding graph cuts

Segmentation: V = V1 ∪ V2 = object nodes ∪ the rest.

Indicators: X = [X1, X2] = [is-object, is-nonobject].

Degree: D = diag(W · 1).

Cuts criterion: max NCuts(X) =
XT

1 WX1

XT

1 DX1

+
XT

2 WX2

XT

2 DX2

.

(Shi and Malik, 97)
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Encoding patch competition
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Competing nodes: pairs of patches of the same label.

S = N + {{2, 9}, {3, 10}, {4, 11}, {7, 8}, {1, 12}}

e.g. X1(N + 2) + X1(N + 9) = 1.

N = total number of pixels

Exclusion condition: one winner only
∑

k∈Sm

X1(k) = 1, m = 1 : |S|.

Sm = a set of nodes in competition.
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Computational solution

Change of variable:

x = X1 −
XT

1 DX1

1T D1
,

we have constrained eigenvalue problem:

x∗ = arg max
xT Wx

xT Dx
, subject to LT x = 0.

Eigensolution in the relaxed continuous domain:

QD−1Wx∗ = λx∗,

Q = I − D−1L(LTD−1L)−1LT .
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Results I
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Results II

segmentation alone: 68s

segmentation-recognition: 58s
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