Segmentation with Pairwise Attraction and Repulsion

Stella X. Yu

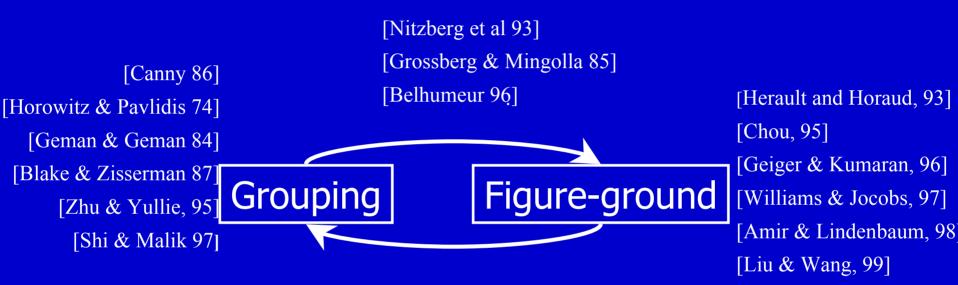
Jianbo Shi

Robotics Institute Carnegie Mellon University {stella.yu, jshi}@cs.cmu.edu

Funded by DARPA HumanID ONR N00014-00-1-0915

Grouping: decomposition into regions of coherent properties

Figure-ground: decomposition into foreground and background

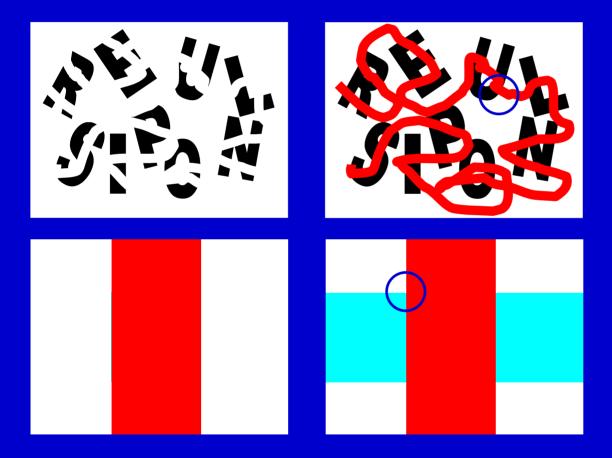


Issues

- Fundamental: segmentation and figure-ground reasoning is circular
- Practical: lack of efficient computational techniques

Figure-ground cues for segmentation

- Figure-ground organization Segmentation + Figure-ground labelling
- Between-region relations can influence the internal organization of a region



Roles of figure-ground cues:

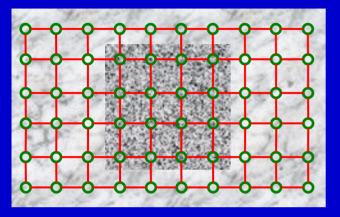
Link incoherent
 background or
 foreground together

✓ Global binding through local cues

Talk overview

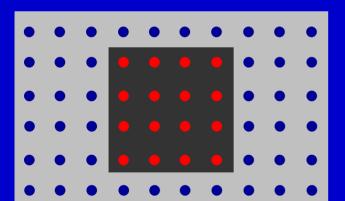
- Segmentation in a graph framework
 Ordered graph partitioning
- Representing pairwise relationships
 - Attraction and repulsion
- Criteria
 - Optimize global configuration of figure vs ground
- Energy formulation
 - Rayleigh quotient of Hermitian matrices
- Efficient solution technique
 - Sparse matrix eigendecomposition
- Results

Segmentation in a graph framework



• G=(V, E, W)

- → V: each node denotes a pixel
- E: each edge denotes a pixel-pixel relationship
- → W: each weight measures pairwise affinity
- Segmentation = vertex partitioning
 - \rightarrow break V into disjoint sets V₁ , V₂



Pairwise affinity, W:

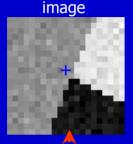
- similarity of pixel attributes
- relative order of figure-ground
- Goal: ordered partitioning

 \rightarrow V₁= figure, V₂ = ground

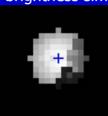
Criteria:

- within-region similarity: high
- between-region similarity: low
- order from figure to ground: high

Generalized affinity: attraction and repulsion



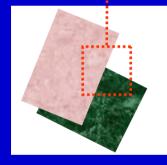
A by proxmity

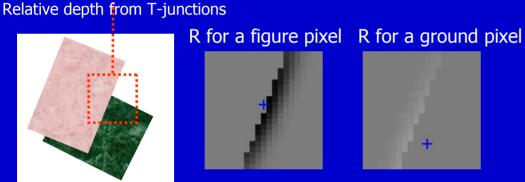


A by brightness similarity Attraction A

- \rightarrow feature similarity
- \rightarrow feature = location, brightness, textureness, motion ,...

the larger the A_{ik}, the more likely j and k in one region

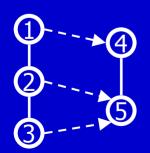




Directional repulsion R

relative order of figure-ground

the larger the |R_{ik}|, the more likely j and k in different regions



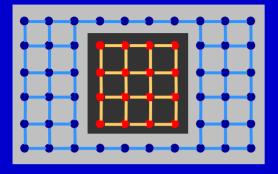
A is symmetric							R is skew-symmetric						
		[1	(1)	0	0	0		0	0	0	(1)	0	
		1	1	1	0	0		0	0	0	0	1	-
	A =	0	1	1	0	0	R =	0	0	0	0	1	
		0	0	0	1	1			0	0	0	0	
		0	0	0	1	1		0	-1	-1	0	0	

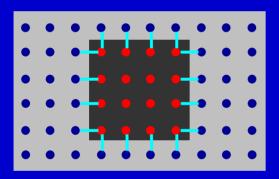
Generalized Affinity W = A + i R

A 5-node graph example

W is Hermitian

Criteria: cuts, associations and difference flows





- within-region similarity
- = within-group attraction
- = associations

assoc (P) =
$$\sum_{u \in P, v \in P} A(u, v)$$

- between-region similarity
- = between-group attraction

= cuts

$$cut(P,Q) = \sum_{u \in P, v \in Q} A(u,v), \quad P \cap Q = \Phi$$



- order from figure to ground
- = figure-to-ground repulsion
- = difference flow

$$difflow(P,Q) = \sum_{u \in P, v \in Q} R(u,v), \quad P \cap Q = \Phi$$

Criteria: generalized normalized association

Maximize within-region similarity and figure-to-ground order

$$Nassoc(V_1, V_2) = \frac{assoc(V_1)}{\deg(V_1)} + \frac{assoc(V_2)}{\deg(V_2)} + \frac{2 \cdot difflow(V_1, V_2)}{\sqrt{\deg(V_1) \cdot \deg(V_2)}}$$

Criteria: generalized normalized cuts

Minimize between-region similarity and ground-to-figure order

 $Ncu \models \frac{\text{figure-ground-inilarity}}{\text{totalfigure-finity}} \frac{\text{figure-ground-inilarit}}{\text{totalfigure-finity}} + \frac{\text{ground-figure-figure-figure-ground-inilarit}}{\text{averageotalaffinity}} + \frac{1}{\text{averageotalaffinity}} + \frac{1}{\text{figure-ground-figure-figure-ground-figure-figure-ground-figure-grou$

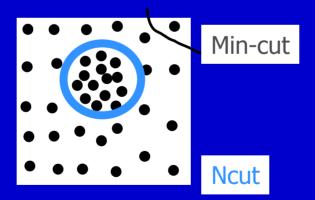
$$Ncut(V_{1}, V_{2}) = \frac{cut(V_{1}, V_{2})}{\deg(V_{1})} + \frac{cut(V_{2}, V_{1})}{\deg(V_{2})} + \frac{2 \cdot difflow(V_{2}, V_{1})}{\sqrt{\deg(V_{1}) \cdot \deg(V_{2})}}$$

Properties of the criteria

Duality to achieve both goals at the same time

Ncut + Nassoc = constant arg min *Ncut* = arg max *Nassoc*

Normalization for global structures



7/13/2003

Energy formulation

 Variables: group indicators

$$X_{l}(u) = \begin{cases} 1, & u \in V_{l} \\ 0, & u \notin V_{l} \end{cases} \quad X_{1} = \begin{bmatrix} 1_{n_{1} \times 1} \\ 0_{n_{2} \times 1} \end{bmatrix}, \quad X_{2} = \begin{bmatrix} 0_{n_{1} \times 1} \\ 1_{n_{2} \times 1} \end{bmatrix}$$

 Energy functions of indicator variables

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 &$$

Energy formulation

Nassoc
$$(X_1, X_2) = \frac{X_1^T A X_1}{X_1^T D X_1} + \frac{X_2^T A X_2}{X_2^T D X_2} + \frac{2X_1^T R X_2}{\sqrt{X_1^T D X_1 \cdot X_2^T D X_2}}$$

$$y = \sqrt{1 - k} X_1 - i \sqrt{k} X_2, \quad k = \frac{\deg(V_1)}{\deg(V)}$$
• Change of variables
Nassoc $(y) = \frac{y^H (A + i \cdot R) y}{y^H D y}$
• Rayleigh quotient
 $s.t. \quad y^{2T} D1 = 0$

Three aspects of solutions

- Efficient solutions in the continuous domain:
 - \rightarrow Eigenvector corresponding to the largest eigenvalue of (A+*i* R, D)

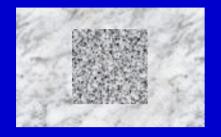
$$y_{opt} = \arg \max \frac{y^H (A + i \cdot R) y}{y^H D y} \Longrightarrow (A + i \cdot R) y_{opt} = \lambda_1 D y_{opt}$$

Little increase in complexity

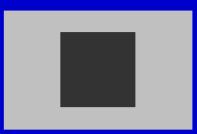
Hermitian matrices preserve the most important properties of real symmetric matrices in eigendecomposition.

- → Sparse matrix eigendecomposition $O(n^{3/2})$, n = # of pixels
- Interpretation of complex-valued solutions
 - Separation in phase plane indicates the separation of groups
 - Relative phase advance indicates figure-ground ordering

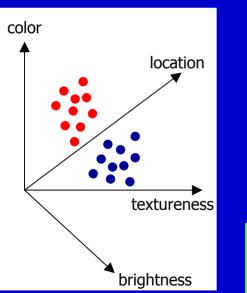
Segmentation as embedding

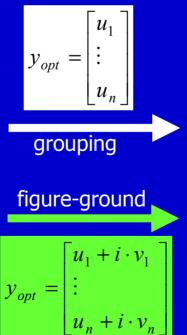


Assign region identity.

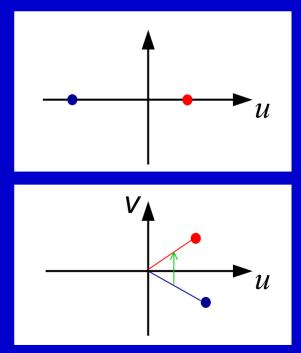


Every pixel corresponds to a point in a high dimensional feature space.

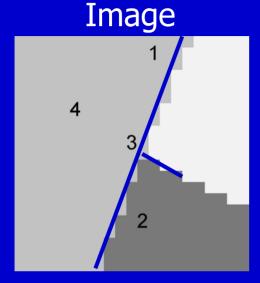




Segmentation is about finding an embedding of manifolds into some 1D or 2D space.



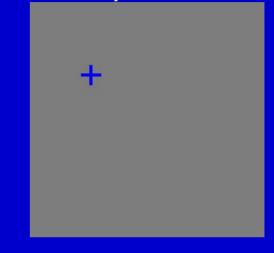
Interaction of attraction and repulsion



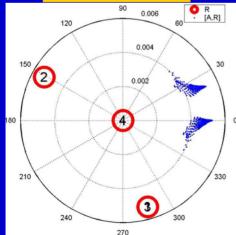
Attraction

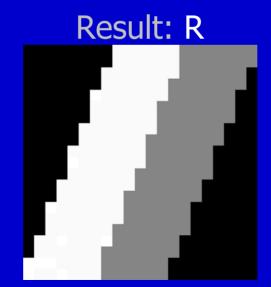
+

Repulsion

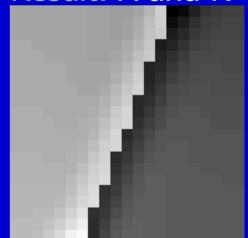


Phase Plot

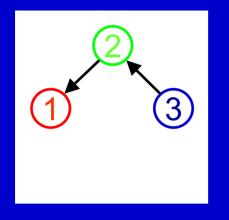


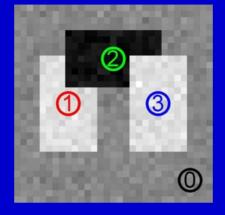


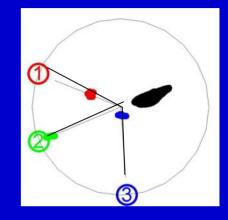
Result: A and R

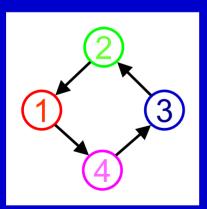


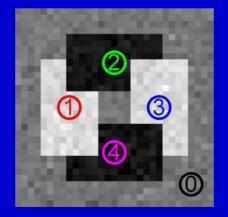
Objects ordered in depth











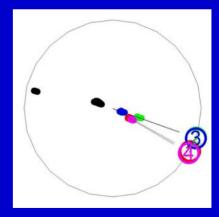
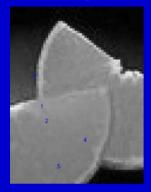


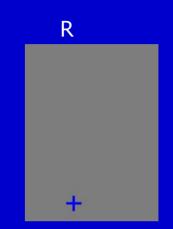
Figure-ground example

Image

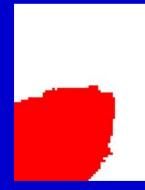


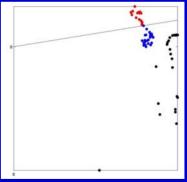
Solutions: A

Oversegmentation based on A



Figure





Conclusions

- Representation
 - Attraction + directional repulsion
- Formulation
 - Ordered graph partitioning for figure and ground
 - Rayleigh quotient of Hermitian matrices
- Solution
 - Efficient algorithm by eigendecomposition
 - Embedding in the phase plane of complex numbers
- Benefits
 - Grouping and figure-ground in one step
 - Computational efficiency

