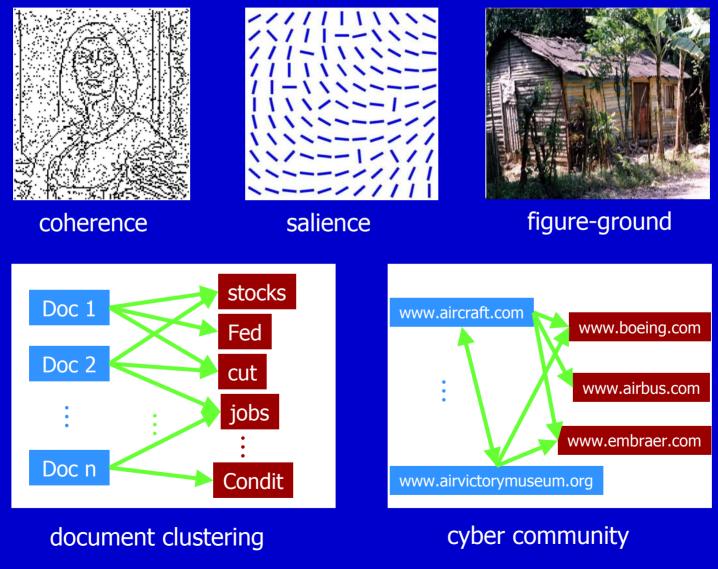
Grouping with Directed Relationships

Stella X. Yu

Robotics Institute Carnegie Mellon University Center for the Neural Basis of Cognition

Grouping: finding global structures

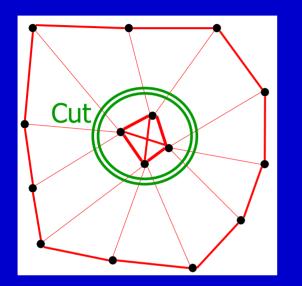


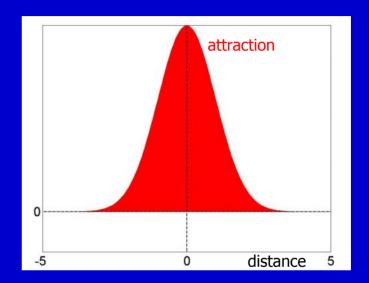
THE OBOTICS

Outline of the talk

- Motivation
- Model
- Examples
- Conclusions

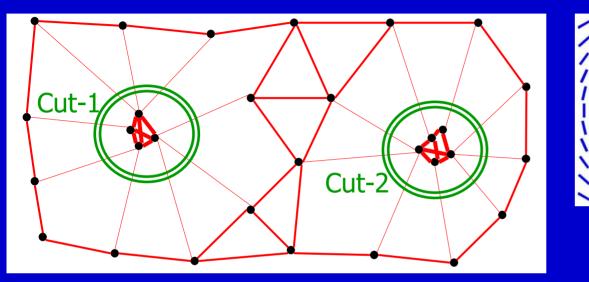
Motivation: grouping with pairwise similarity





Separation cost: pairwise similarity = attraction Attraction unites elements who have <u>common friends</u>

Motivation: similarity grouping is not enough

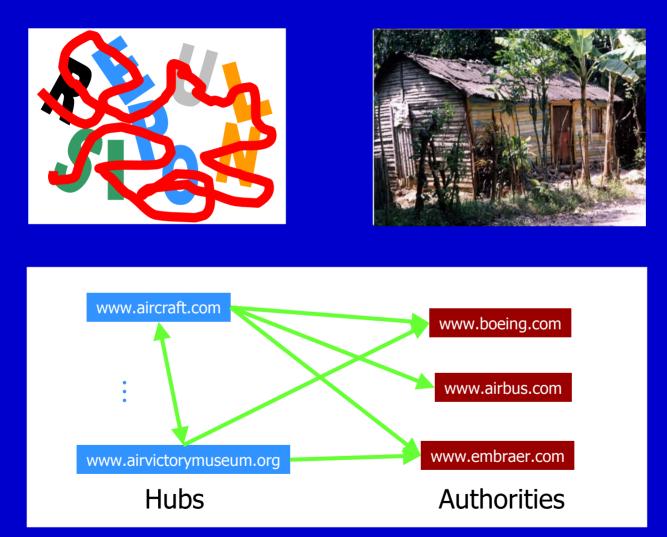


Cost-1 + Cost-2 > min (Cost-1, Cost-2) Cannot unite elements who have <u>common enemies</u>

Motivation: similarity vs. dissimilarity

	Coherent ground	Incoherent ground
Coherent figure	Yes	Bad
Incoherent figure	No	

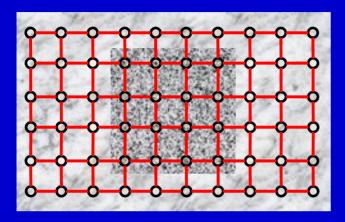
Motivation: grouping with ordering

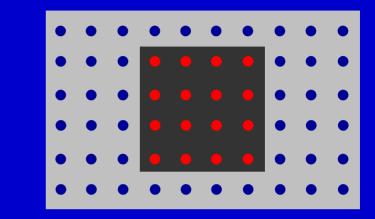


Model

- Goal
 - Similarity grouping, dissimilarity grouping, figure-ground in one step
- Representation
 - A pair of directed graphs for any pairwise relationships
- Criteria
 - Generalized normalized cuts
- Energy formulation
 - Rayleigh quotients of Hermitian matrices
- Solution
 - Phase plane partitioning

Review: segmentation in a graph framework





• G=(V, E, W)

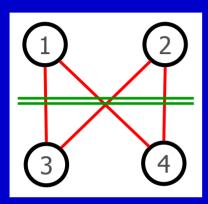
- V: each node denotes a pixel
- → E: each edge denotes a pixel-pixel relationship
- → W: each weight measures pairwise similarity

Segmentation = node partitioning

 \rightarrow break V into disjoint sets V₁ , V₂

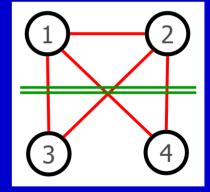
[Shi & Malik, 97] [Puzicha et al, 98] [Perona & Freeman, 99]

Review: cuts, associations, degrees



Cuts: between-group similarity 2
 3
 4

Associations: within-group similarity

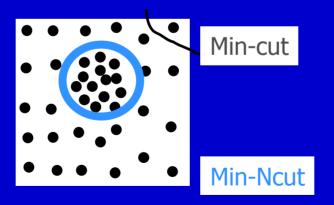


Degrees: total similarity

Review: criteria and properties

Two goals

- Maximize normalized associations
- Minimize normalized cuts
- Duality to achieve both goals at the same time
- Normalization for larger structures



Review: energy formulation

$$X_{1}(u) = \begin{cases} 1, & u \in V_{1} \\ 0, & u \notin V_{1} \end{cases} X_{1} = \begin{bmatrix} 1_{n_{1} \times 1} \\ 0_{n_{2} \times 1} \end{bmatrix}, X_{2} = \begin{bmatrix} 0_{n_{1} \times 1} \\ 1_{n_{2} \times 1} \end{bmatrix}$$
 • Variables: indicators

$$Nassoc (X_{1}, X_{2}) = \sum_{t=1}^{2} \frac{X_{t}^{T} W X_{t}}{X_{t}^{T} D X_{t}}$$
 • Energy functions

$$y = (1 - \alpha) X_{1} - \alpha X_{2}, \quad \alpha = \frac{\deg(V_{1})}{\deg(V)}$$
 • Change of variables

$$Nassoc (y) = \frac{y^{T} W y}{y^{T} D y}, \quad s.t. \quad y^{T} D 1 = 0$$
 • Rayleigh quotient

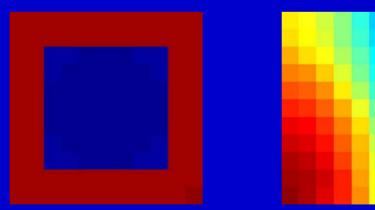
$$W y_{opt} = \lambda_{2} D y_{opt}$$
 • Solution: eigenvecto

Review: interpretation of the eigensolution

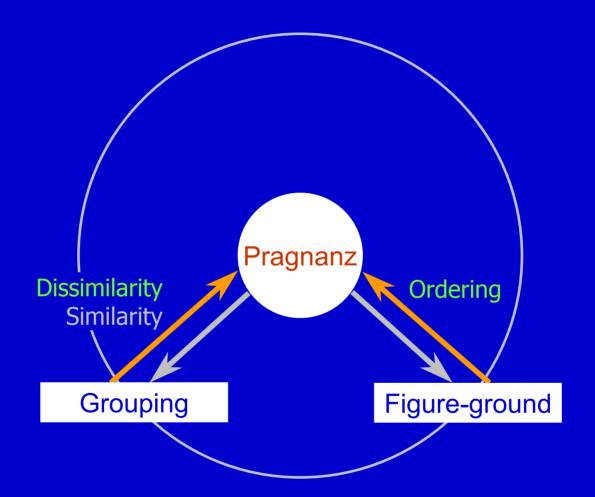
• The derivation holds so long as $X_1 + X_2 = 1$

 $y = X_1 - \alpha$

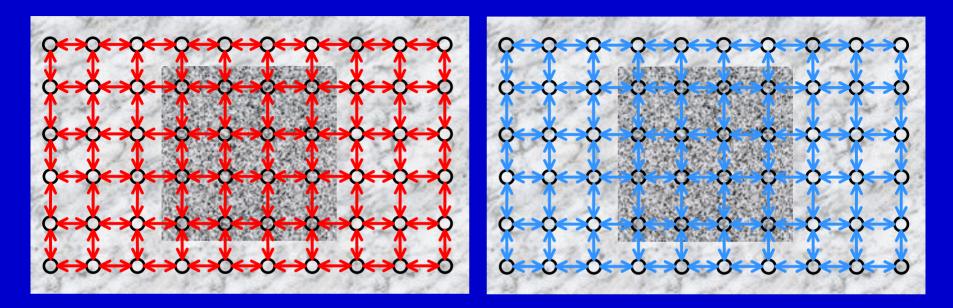
- The eigenvector solution is a linear transformation (scaled and offset version) of the probabilistic membership indicator for one group.
- If y is well separated, then two groups are well defined; otherwise, the separation is ambiguous



Model: goal



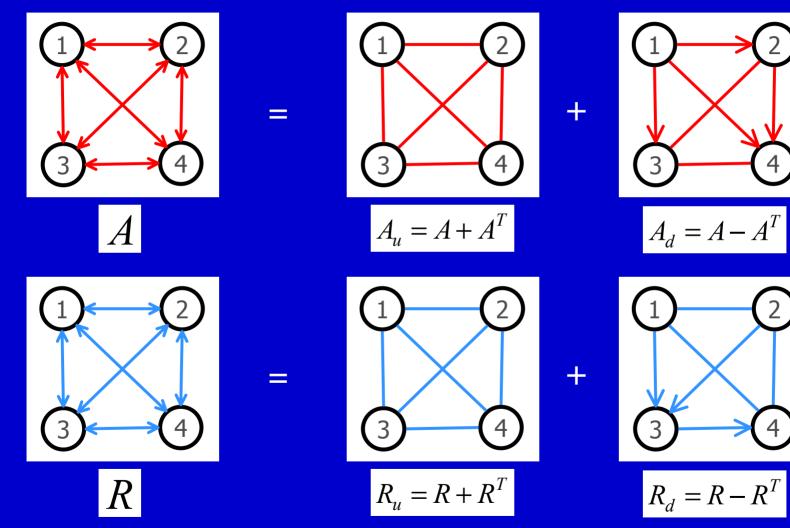
Model: representation



- G=(V, E, A)A asymmetric
- Separation cost

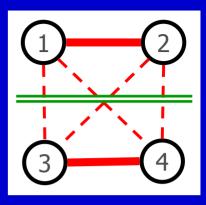
- G=(V, E, R)
- R asymmetric
- Separation gain

Model: attraction, repulsion, difference flow

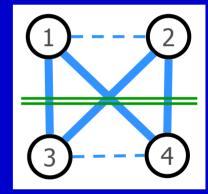


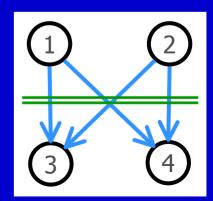
Model: criteria

 Maximize normalized within-region similarity between-region dissimilarity figure-to-ground order

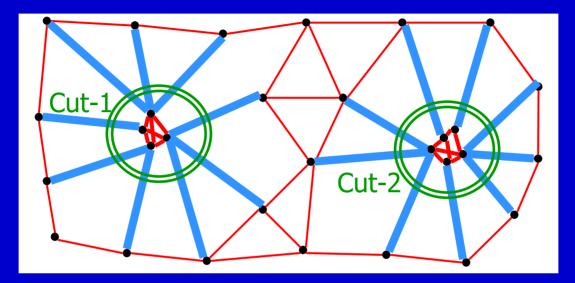


 Minimize normalized between-region similarity within-region dissimilarity ground-to-figure order



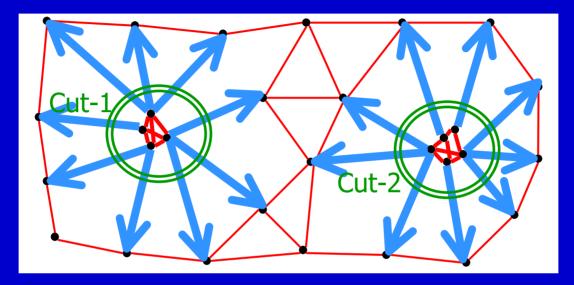


Model: is repulsion what we want?



Cost-1 + Cost-2 < min (Cost-1 + Gain-2, Cost-2 + Gain-1) Repulsion unites elements who have <u>common enemies</u>

Model: is difference flow what we want?



Cut (V1, V2) ≠ Cut (V2, V1) Ordered partitioning

Model: energy formulation

$$X_{l}(u) = \begin{cases} 1, & u \in V_{l} \\ 0, & u \notin V_{l} \end{cases}$$

Variables: group indicators

$$U = A_u - R_u + D_R$$
$$V = A_d + R_d$$
$$D = D_{A_u} + D_{R_u}$$

Weight matrices and degree matrix

Energy functions of indicator variables

Nassoc
$$(X_1, X_2) = \sum_{t=1}^{2} \frac{X_t^T U X_t}{X_t^T D X_t} + \frac{2X_1^T V X_2}{\sqrt{X_1^T D X_1 \cdot X_2^T D X_2}}$$

Model: energy formulation

Nassoc
$$(X_1, X_2) = \sum_{t=1}^{2} \frac{X_t^T U X_t}{X_t^T D X_t} + \frac{2X_1^T V X_2}{\sqrt{X_1^T D X_1 \cdot X_2^T D X_2}}$$

$$z = \sqrt{1 - \alpha} X_1 (-i) (\alpha X_2), \quad \alpha = \frac{\deg(V_1)}{\deg(V)}$$

Generalized affinity

Nassoc
$$(z) = \frac{z^H W z}{z^H D z}$$

s.t. $z^{2T} D 1 = 0$

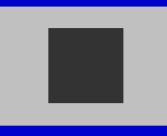
 $W = U + i \cdot V$

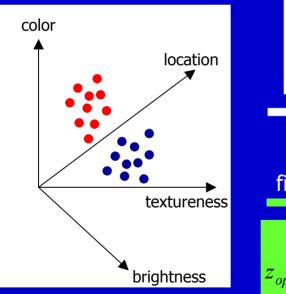
Rayleigh quotient

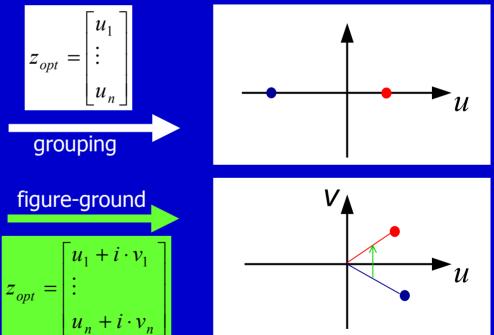
Model: three aspects of solutions

- Efficient solutions in the continuous domain:
 - Eigenvector corresponding to the largest eigenvalue of (W, D)
- Little increase in complexity
 - Hermitian matrices and sparse matrix eigendecomposition
- Interpretation of complex-valued solutions
 - Phase plane partitioning

Model: segmentation as embedding

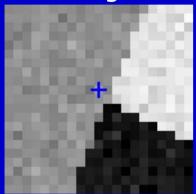




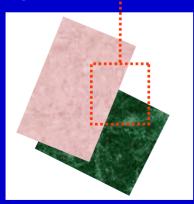


Results: difference flow for relative depth

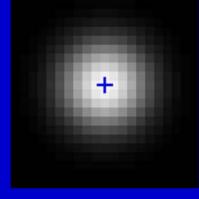
image



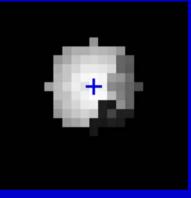
Relative depth from T-junctions



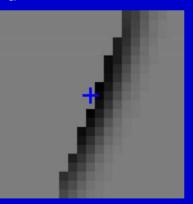
A by proxmity

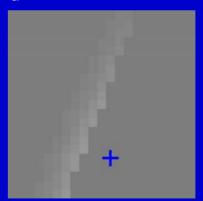


A by brightness similarity

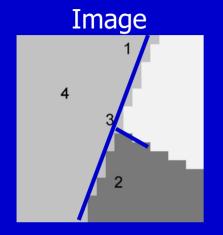


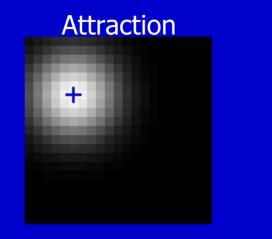
R_d for a figure pixel R_d for a ground pixel



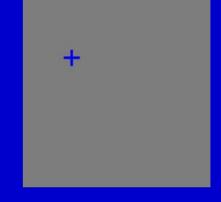


Results: interaction of attraction and repulsion

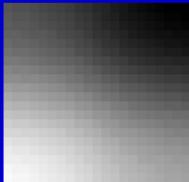




Repulsion

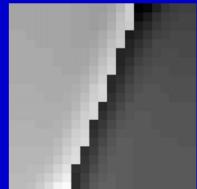


Result: A



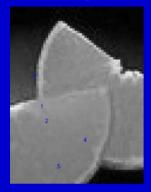
Result: R

Result: A and R



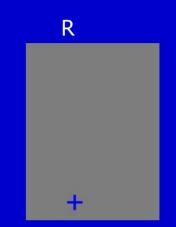
Results: figure-ground segregation

Image

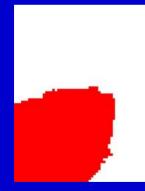


Solutions: A

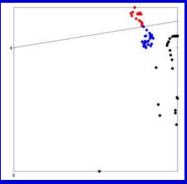
Oversegmentation based on A



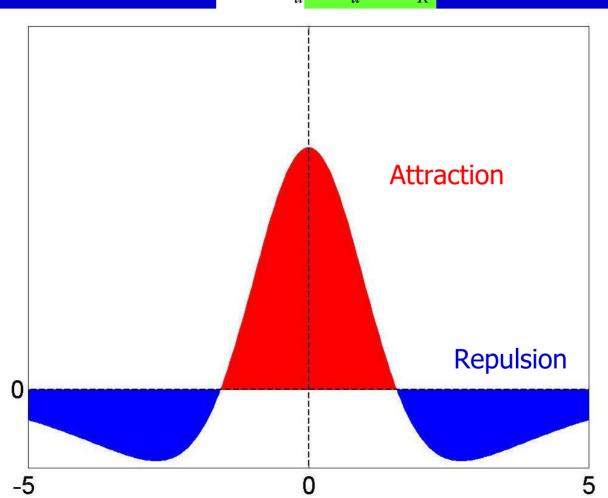
Figure



Phase plot

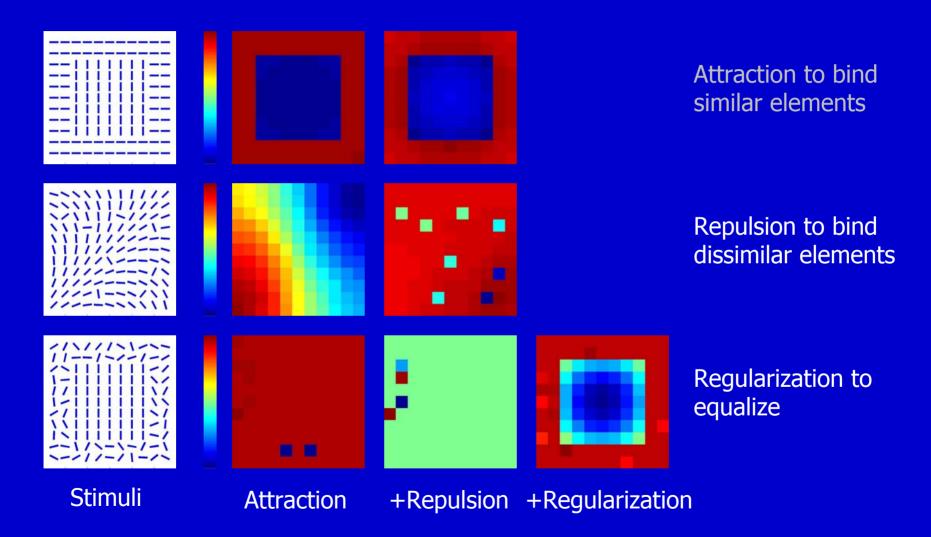


Results: from Gaussian to Mexican hat

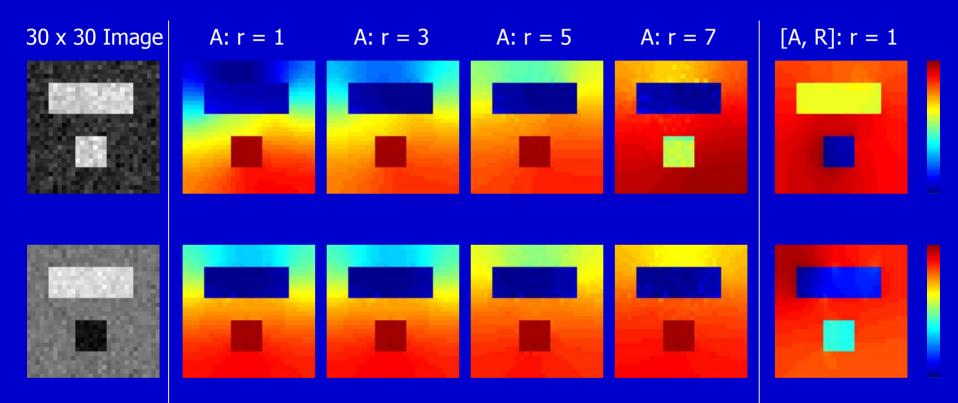


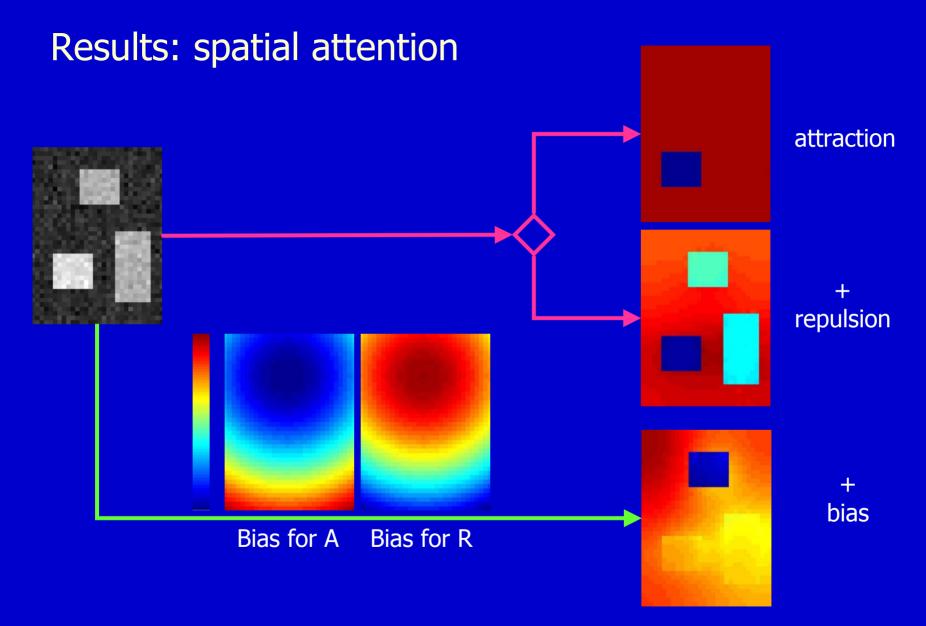
$$U = A_u - R_u + D_R$$

Results: popout



Results: computational efficiency





Conclusions

- Pairwise relationships
 - Attraction: similarity grouping
 - Repulsion: dissimilarity grouping
 - Difference flow: relative ordering
- Advantages of repulsive and ordinal relationships:
 - Complementary
 - Computational efficiency
 - Treat 2D and 3D configuration cues equally
- Figure-ground organization

	Coherent ground	Incoherent ground
Coherent figure	Attraction	+Regularization
Incoherent figure	+Repulsion	

