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What Is It About?

Incorporating prior knowledge into grouping
Unitary generative model
Global configurations: partially labelled data and object models
Attention

Computation
Efficient solution in a graph partitioning framework

Goals
Bridge the gap between generative models and discriminative models
Bridge the gap between formulation and computation
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Grouping with Markov Random Fields

MRF: data structure = data generation model + segmentation model

)(log)|(log);(min XpXfpfXE −−=

Segmentation is to find a 
partitioning of an image, with 
generative models explaining 
each partition.

Generative models constrain 
the continuous observation 
data, the segmentation model 
constrains the discrete states.

The solution sought is the 
most probable state, or the 
state of the lowest energy.
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[Geman & Geman, 84, …]
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Grouping with Spectral Graph Partitioning

SGP: data structure = a weighted graph, weights describing data affinity
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Segmentation is to find a node 
partitioning of a relational graph, with 
minimum total cut-off affinity.

Discriminative models are used to 
evaluate the weights between nodes.

The solution sought is the cuts of the 
minimum energy.

[Shi & Malik, 97; Perona & Freeman, 98; Malik et al, 01, …]
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Solving MRF by Graph Partitioning

Some simple MRF models can be translated into graph partitioning

∑∑ ∑ +=
∈ p

ppp
p pNq

qpqp fXUXXWfXE ),(),();(min
)(

,
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[Greig et al, 89; Ferrari et al, 95; Boykov et al, 98; Roy & Cox, 98; Ishikawa & Geiger, 98, …]
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Comparison of Two Approaches 

Formulation ComputationPros \ Cons

Simulation: e.g. Gibbs sampler
Parameter estimation is hard
Difficult to compute probability
Convergence is very slow
Only local optimum

Generative models
Bayesian interpretation 
General local interaction

Sensitive to model mismatch

Markov
Random 

Fields

Spectral decomposition
Fast and robust
Global optimum

Discriminative models
No models required
Lack prior to guide grouping 

Graph
Partitioning
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Prior Knowledge in Grouping 

Global Configuration ConstraintsLocal Constraints

Unitary generative 
models

Object models:
What to look for

Attention:
Where to look for

Red foreground Partial grouping Spatial attention

How to encode them in discriminative models, e.g. SGP?
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Review: Segmentation on Relational Graphs

G = (V, E, A, R)
V: each node denotes a pixel
E: each edge denotes a pixel-pixel relationship 
A: each weight measures pairwise similarity
R: each weight measures pairwise dissimilarity

Dual criteria on dual measures
Maximize within-group A and between-group R
Minimize between-group A and within-group R

Segmentation = node partitioning
break V into disjoint sets V1 , V2 ; so that 
cut-off attraction is small 
cut-off repulsion is large
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Review: Energy Function Formulation
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Review: Eigenvector as a Solution

The derivation holds so long as 121 =+ XX

ααα −=−−= 121)1( XXXy

The eigenvector solution is a linear transformation, scaled and offset
version of the probabilistic membership indicator for one group.

If y is well separated, then two groups are well defined;
otherwise, the separation is ambiguous

Solution y
well separated

Solution y
ambiguous

stimulus
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Interaction: from Gaussian to Mexican Hat
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With repulsion, negative correlations in MRF formulations can be 
translated into graph partitioning formulations directly.
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Encoding Bias: Unitary Preference

Introduce dummy nodes
Expand the node set
Soft Constraints

Foreground
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γ controls the relative weighting 
between data and preference.Background
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Encoding Bias: Partial Grouping

Introduce partial grouping solution
Assign a particular group label
using dummy nodes
Hard ConstraintsManual selection:

pixels marked w/ 
the same color 
are in one group

Coloring dummy 
nodes is to assign
a particular group
label

Background

Foreground
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M is the constraint space
Q is the reduced solution space.
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Encoding Bias: Constraining Solution Space

Clustering with 
Partially labelled data

Segmentation with
object models

z Qy =0=yM T

S: translated versions of a shape

Find the eigenshape Q of S
Constraining y = Q z allows us
to segment out this particular
shape in an image.

General form of constraints: 0)( =Ψ y
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Encoding Bias: Attention

Modulation
Connections for some nodes
are enhanced / weakened
Weights at attentional
hotspot are less distorted

Spatial Attention:
center region is
analyzed w/ more
discrimination
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Representations of Bias
F

G

1 2 3 4 5 86 7 9

Partial grouping
{3, 4}, {6, 7}
{9, G}

Preference
{F, 1,2,4}
{G, 5,7,8}

Attention
{5, 6}
{8, 9}

Soft constraints ModulationHard constraints
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Constrained Optimization
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Rank(Q) = # of nodes - # of independent constraints
Problem: Unconstrained affinity matrix becomes denser
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Results: Preference and Partial Grouping

Grouping w/o bias:
Each is one group

M: Hard constraintsData: three stripes

O : hard constraints
∆ : soft constraints
F/G : Filled / empty

Grouping w/ bias:
Left and right are one group

U: Basis of constraint space
M = U Σ VT
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Results: Preference and Partial Grouping

Hard constraints

Soft constraints

data

prior
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Results: Partial Grouping

1st Eigenvector 2nd Eigenvector 3rd Eigenvector

Image and manually 
set partial grouping

First row: 
Grouping w/o bias

Second row:
Grouping w/ bias

The pumpkin starts to emerge as a whole from the 
background regardless of its surface markings.
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Results: Figure Detection with Soft Constraints

Background Foreground Difference

Difference Thresholded
used as soft constraints

Grouping of foreground Grouping of foreground
with bias
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Results: Spatial Attention

attraction

+
repulsion

+
bias

Bias for A Bias for R
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