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Abstract

With the optimization of pattern discrimination as a goal, graph
partitioning approaches often lack the capability to integrate prior
knowledge to guide grouping. In this paper, we consider priors
from unitary generative models, partially labeled data and spatial
attention. These priors are modelled as constraints in the solution
space. By imposing uniformity condition on the constraints, we
restrict the feasible space to one of smooth solutions. A subspace
projection method is developed to solve this constrained eigenprob-
lem. We demonstrate that simple priors can greatly improve image
segmentation results.

1 Introduction

Grouping is often thought of as the process of �nding intrinsic clusters or group
structures within a data set. In image segmentation, it means �nding objects or
object segments by clustering pixels and segregating them from background. It
is often considered a bottom-up process. Although never explicitly stated, higher
level of knowledge, such as familiar object shapes, is to be used only in a separate
post-processing step.

The need for the integration of prior knowledge arises in a number of applications. In
computer vision, we would like image segmentation to correspond directly to object
segmentation. In data clustering, if users provide a few examples of clusters, we
would like a system to adapt the grouping process to achieve the desired properties.
In this case, there is an intimate connection to learning classi�cation with partially
labeled data.

We show in this paper that it is possible to integrate both bottom-up and top-down
information in a single grouping process. In the proposed method, the bottom-up
grouping process is modelled as a graph partitioning [1, 4, 12, 11, 14, 15] prob-
lem, and the top-down knowledge is encoded as constraints on the solution space.
Though we consider normalized cuts criteria in particular, similar derivation can be
developed for other graph partitioning criteria as well. We show that it leads to a
constrained eigenvalue problem, where the global optimal solution can be obtained
by eigendecomposition. Our model is expanded in detail in Section 2. Results and
conclusions are given in Section 3.



2 Model

In graph theoretic methods for grouping, a relational graph GA = (V;E;W ) is �rst
constructed based on pairwise similarity between two elements. Associated with
the graph edge between vertex i and j is weight Wij , characterizing their likelihood
of belonging in the same group.

For image segmentation, pixels are taken as graph nodes, and pairwise pixel simi-
larity can be evaluated based on a number of low level grouping cues. Fig. 1c shows
one possible de�nition, where the weight between two pixels is inversely proportional
to the magnitude of the strongest intervening edge [9].

a)Image. b)Edge map. c)AÆnity �elds. d)NCuts. e)Segmentation.

Figure 1: Segmentation by graph partitioning. a)200 � 129 image with a few pixels
marked(+). b)Edge map extracted using quadrature �lters. c)Local aÆnity �elds of
marked pixels superimposed together. For every marked pixel, we compute its aÆnity
with its neighbours within a radius of 10. The value is determined by a Gaussian function
of the maximum magnitude of edges crossing the straight line connecting the two pixels
[9]. When there is a strong edge separating the two, the aÆnity is low. Darker intensities
mean larger values. d)Solution by graph partitioning. It is the second eigenvector from
normalized cuts [15] on the aÆnity matrix. It assigns a value to each pixel. Pixels of
similar values belong to the same group. e)Segmentation by thresholding the eigenvector
with 0. This gives a bipartitioning of the image which corresponds to the best cuts that
have maximum within-region coherence and between-region distinction.

After an image is transcribed into a graph, image segmentation becomes a vertex
partitioning problem. Consider segmenting an image into foreground and back-
ground. This corresponds to vertex bipartitioning (V1;V2) on graph G, where
V = V1 [ V2 and V1 \ V2 = ?. A good segmentation seeks a partitioning such
that nodes within partitions are tightly connected and nodes across partitions are
loosely connected. A number of criteria have been proposed to achieve this goal.
For normalized cuts [15], the solution is given by some eigenvector of weight matrix
W (Fig. 1d). Thresholding on it leads to a discrete segmentation (Fig. 1e). While
we will focus on normalized cuts criteria [15], most of the following discussions apply
to other criteria as well.

2.1 Biased grouping as constrained optimization

Knowledge other than the image itself can greatly change the segmentation we might
obtain based on such low level cues. Rather than seeing boundaries between black
and white regions, we see objects. The sources of priors we consider in this paper
are: unitary generative models (Fig. 2a), which could arise from sensor models
in MRF [5], partial grouping (Fig. 2b), which could arise from human computer
interaction [8], and spatial attention (Fig. 2c). All of these provide additional, often
long-range, binding information for grouping.

We model such prior knowledge in the form of constraints on a valid grouping
con�guration. In particular, we see that all such prior knowledge de�nes a partial



a)Bright foreground. b)Partial grouping. c)Spatial attention.

Figure 2: Examples of priors considered in this paper. a)Local constraints from unitary
generative models. In this case, pixels of light(dark) intensities are likely to be the fore-
ground(background). This prior knowledge is helpful not only for identifying the tiger as
the foreground, but also for perceiving the river as one piece. How can we incorporate
these unitary constraints into a graph that handles only pairwise relationships between
pixels? b)Global con�guration constraints from partial grouping a priori. In this case,
we have manually selected two sets of pixels to be grouped together in foreground (+)
and background (N) respectively. They are distributed across the image and often have
distinct local features. How can we force them to be in the same group and further bring
similar pixels along and push dissimilar pixels apart? c)Global constraints from spatial
attention. We move our eyes to the place of most interest and then devote our limited
visual processing to it. The complicated scene structures in the periphery can thus be
ignored while sparing the parts associated with the object at fovea. How can we use this
information to facilitate �gural popout in segmentation?

grouping solution, indicating which set of pixels should belong to one partition.
Let Hl, l = 1; � � � ; n, denote a partial grouping. Ht have pixels known to be in
Vt; t = 1; 2. These sets are derived as follows.

Unitary generative models: H1 and H2 contains a set of pixels that satisfy the
unitary generative models for foreground and background respectively. For example,
in Fig. 2a, H1(H2) contains pixels of brightest(darkest) intensities.

Partial grouping: EachHl, l = 1; � � � ; n, contains a set of pixels that users specify to
belong together. The relationships between Hl, l > 2 and Vt, t = 1; 2 are inde�nite.

Spatial attention: H1 = ? and H2 contains pixels randomly selected outside the
visual fovea, since we want to maintain maximum discrimination at the fovea but
merging pixels far away from the fovea to be one group.

To formulate these constraints induced on the graph partitioning, we introduce
binary group indicators X = [X1; X2]. Let N = jVj be the number of nodes in the
graph. For t = 1; 2, Xt is an N � 1 vector where Xt(k) = 1 if vertex k 2 Vt and 0
otherwise. The constrained grouping problem can be formally written as:

min �(X1; X2)
s.t. Xt(i) = Xt(j); i; j 2 Hl; l = 1; � � � ; n; t = 1; 2;

Xt(i) 6= Xt(j); i 2 H1; j 2 H2; t = 1; 2;

where �(X1; X2) is some graph partitioning cost function, such as minimum cuts
[6], average cuts [7], or normalized cuts [15]. The �rst set of constraints can be

re-written in matrix form: U
T
X = 0 , where, e.g. for some column k, Uik = 1,

Ujk = �1. We search for the optimal solution only in the feasible set determined
by all the constraints.

2.2 Conditions on grouping constraints

The above formulation can be implemented by the maximum-ow algorithm for
minimum cuts criteria [6, 13, 3], where two special nodes called source and sink are



introduced, with in�nite weights set up between nodes in H1(H2) and source(sink).
In the context of learning from labeled and unlabeled data, the biased mincuts
are linked to minimizing leave-one-out cross validation [2]. In the normalize cuts
formulation, this leads to a constrained eigenvalue problem, as soon to be seen.

However, simply forcing a few nodes to be in the same group can produce some
undesirable graph partitioning results, illustrated in Fig. 3. Without bias, the data
points are naturally �rst organized into top and bottom groups, and then subdivided
into left and right halves (Fig. 3a). When we assign points from top and bottom
clusters to be together, we do not just want one of the groups to lose its labeled
point to the other group (Fig. 3b), but rather we desire the biased grouping process
to explore their neighbouring connections and change the organization to left and
right division accordingly.
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a)No bias. b)With bias.

Figure 3: Undesired grouping caused by simple grouping constraints. a)Data points
are distributed in four groups, with a larger spatial gap between top and bottom
groups than that between left and right groups. De�ning weights based on prox-
imity, we �nd the top-bottom grouping as the optimal bisection. b)Introduce two
pairs of �lled nodes to be together. Each pair has one point from the top and the
other from the bottom group. The desired partitioning should now be the left-right
division. However, perturbation on the unconstrained optimal cut can lead to a
partitioning that satis�es the constraints while producing the smallest cut cost.

The desire of propagating partial grouping information on the constrained nodes
is, however, not reected in the constrained partitioning criterion itself. Often,
a slightly perturbed version of the optimal unbiased cut becomes the legitimate
optimum. One reason for such a solution being undesirable is that some of the
\perturbed" nodes are isolated from their close neighbours.

To �x this problem, we introduce the notion of uniformity of a graph partitioning.
Intuitively, if two labeled nodes, i and j, have similar connections to their neigh-
bours, we desire a cut to treat them fairly so that if i gets grouped with i's friends,
j also gets grouped with j's friends (Fig. 3b). This uniformity condition is one way
to propagate prior grouping information from labeled nodes to their neighbours.

For normalized cuts criteria, we de�ne the normalized cuts of a single node to be

NCuts(i;X) =

P
Xt(k) 6=Xt(i);8t

Wik

Dii

:

This value is high for a node isolated from its close neighbours in partitioning X .



We may not know in advance what this value is for the optimal partitioning, but
we desire this value to be the same for any pair of nodes preassigned together:

NCuts(i;X) = NCuts(j;X);8i; j 2 Hl; l = 1; � � � ; n:

While this condition does not force NCuts(i;X) to be small for each labeled node,
it is unlikely for all of them to have a large value while producing the minimum
NCuts for the global bisection. Similar measures can be de�ned for other criteria.
In Fig. 4, we show that the uniformity condition on the bias helps preserving
the smoothness of solutions at every labeled point. Such smoothing is necessary
especially when partially labeled data are scarce.
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a)Point set data. b)Simple bias. c)Conditioned bias.
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Figure 4: Condition constraints with uniformity. a)Data consist of three strips, with
100 points each, numbered from left to right. Two points from the side strips are ran-
domly chosen to be pre-assigned together. b)Simple constraint UT

X = 0 forces any
feasible solution to have equal valuation on the two marked points. c)Conditioned

constraint UT
PX = 0. Note that now we cannot tell which points are biased. We

compute W using Gaussian function of distance with � = 3. d)Segmentation with-
out bias gives three separate groups. e)Segmentation with simple bias not only fails
to glue the two side strips into one, but also has two marked points isolated from
their neighbours. f)Segmentaion with conditioned bias brings two side strips into
one group. See the de�nition of P below.

2.3 Computation: subspace projection

To develop a computational solution for the constrained optimization problem, we
introduce some notations. Let the degree matrix D be a diagonal matrix, Dii =P

kWik ;8i. Let P = D
�1
W be the normalized weight matrix. It is a transition

probability matrix for nonnegative weight matrix W [10]. Let � =
XT

1
DX1

1TD1
be

the degree ratio of V1, where 1 is the vector of ones. We de�ne a new variable
x = (1� �)X1 � �X2. We can show that for normalized cuts, the biased grouping
with the uniformity condition is translated into:

min �(x) =
x
T (D �W )x

x
T
Dx

; s.t. UT
Px = 0:

Note, we have dropped the constraint Xt(i) 6= Xt(j), i 2 H1, j 2 H2, t = 1; 2.

Using Lagrange multipliers, we �nd that the optimal solution x
� satis�es:



QPx
� = �x

�
; �(x�) = 1� �;

where Q is a projector onto the feasible solution space:

Q = I �D

�1
V (V T

D

�1
V )�1V T

; V = P

T
U:

Here we assume that the conditioned constraint V is of full rank, thus V T
D
�1
V is

invertible. Since 1 is still the trivial solution corresponding to the largest eigenvalue
of 1, the second leading right eigenvector of the matrix QP is the solution we seek.

To summarize, given weight matrix W , partial grouping in matrix form U
T
x = 0,

we do the following to �nd the optimal bipartitioning:

Step 1: Compute degree matrix D, Dii =
P

j Wij ; 8i.

Step 2: Compute normalized matrix P = D
�1
W .

Step 3: Compute conditioned constraint V = P
T
U .

Step 4: Compute projected weight matrix ~
W = QP=P �D

�1
V (V T

D
�1
V )�1V T

P .

Step 5: Compute the second largest eigenvector x�: ~
Wx

� = �x
�.

Step 6: Threshold x� to get a discrete segmentation.

3 Results and conclusions

We apply our method to the images in Fig. 2. For all the examples, we compute
pixel aÆnity W as in Fig. 1. All the segmentation results are obtained by thresh-
olding the eigenvectors using their mean values. The results without bias, with
simple bias UT

x = 0 and conditioned bias UT
Px = 0 are compared in Fig. 5, 6, 7.

a)Edgemap. b)Prior. c)NCuts on W . d)Seg. w/o bias.

e)Simple bias. f)Seg. on e) g)Conditioned bias. h)Seg. w/ bias.

Figure 5: Segmentation with bias from unitary generative models. a)Edge map of the
100 � 150 image. N = 15000. b)We randomly sample 17 brightest pixels for H1 (+), 48
darkest pixels for H2 (N), producing 63 constraints in total. c) and d) show the solution
without bias. It picks up the optimal bisection based on intensity distribution. e) and
f) show the solution with simple bias. The labeled nodes have an uneven inuence on
grouping. g) and h) show the solution with conditioned bias. It successfully breaks the
image into tiger and river as our general impression of this image. The computation for
the three cases takes 11, 9 and 91ms respectively.

Prior knowledge is particularly useful in supplying long-range grouping information
which often lacks in data grouping based on low level cues. With our model, the
partial grouping prior can be integrated into the bottom-up grouping framework by
seeking the optimal solution in a restricted domain. We show that the uniformity
constraint is e�ective in eliminating spurious solutions resulting from simple per-
turbation on the optimal unbiased solutions. Segmentation from the discretization
of the continuous eigenvectors also becomes trivial.



a)Edgemap. b)Prior. c)NCuts on W . d)Seg. w/o bias.

e)Simple bias. f)Seg. on e) g)Conditioned bias. h)Seg. w/ bias.

Figure 6: Segmentation with bias from hand-labeled partial grouping. a)Edge map of
the 80 � 82 image. N = 6560. b)Hand-labeled partial grouping includes 21 pixels for H1

(+), 31 pixels for H2 (N), producing 50 constraints in total. c) and d) show the solution
without bias. It favors a few largest nearby pieces of similar intensity. e) and f) show the
solution with simple bias. Labeled pixels in cluttered contexts are poor at binding their
segments together. g) and h) show the solution with conditioned bias. It successfully pops
out the pumpkin made of many small intensity patches. The computation for the three
cases takes 5, 5 and 71ms respectively.

a)Prior. b)Simple bias. c)Seg. on b) d)Conditioned. e)Seg. w/ bias.

f)4th eig. b) g)6th eig. b) h)4th eig. d) i)6th eig. d) j)8th eig. d)

Figure 7: Segmentation with bias from spatial attention. N = 25800. a)We randomly
choose 86 pixels far away from the fovea (Fig. 2c) for H2 (N), producing 85 constraints.
b) and c) show the solution with simple bias. It is similar to the solution without bias
(Fig. 1). d) and e) show the solution with conditioned bias. It ignores the variation
in the background scene, which includes not only large pieces of constant intensity, but
also many small segments of various intensities. The foreground successfully clips out the
human �gure. f) and g) are two subsequent eigenvectors with simple bias. h), i) and
j) are those with conditioned bias. There is still a lot of structural organization in the
former, but almost none in the latter. This greatly simpli�es the task we face when seeking
a segmentation from the continuous eigensolution. The computation for the three cases
takes 16, 25 and 220ms respectively.



All these bene�ts come at a computational cost that is 10 times that for the original
unbiased grouping problem. We note that we can also impose both U

T
x = 0 and

U
T
Px = 0, or even U

T
P
s
x = 0; s > 1. Little improvement is observed in our

examples. Since projected weight matrix ~
W becomes denser, the computation slows

down. We hope that this problem can be alleviated by using multi-scale techniques.
It remains open for future research.
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