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1. INTRODUCTION

The study of expectation optimality criteria (standard criteria) has
constituted most previous work in the area of Markov decision processes
(MDPs). However, the optimal policies obtained from such models are not
reliable when considering a single or a few decision processes, since only
the average performance over many trials is guaranteed to be optimal. In
fact, the expectation optimality criteria are insufficient to characterize the
variability—risk features of practical problems [1-5]. A typical requirement
for a long-term application, for example, unmanned space flight and
satellites, is to have a 0.95 or greater probability of being operational at
the end of a 10-year period, whereas a typical requirement for space
shuttle, aircraft flight control, and military systems is to have a reliability
of 0.97 at the end of a 3-h time period. Likewise, chemical reactions must
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be precisely controlled to prevent explosions or other unwanted effects. In
some controllable stochastic dynamic systems [2, 3, 6, 7], it is desirable to
maximize the reliability of normal operation. For the optimal regulation of
a hydropower station reservoir considered in [8, 9], the probability of
generating electric power at more than some given level should be no less
than 0.95 for whatever working state the plant is in. In insurance services,
the risk of total capital being less than some lower limit should generally
be avoided as much as possible. In dynamic portfolio selection, investors
are interested in strategies that can help them reach a given profit with
maximal probability [10].

In all of these applications, which demand high reliability, system
performance is controlled on a single trial basis, and thus the task
requirements are formulated as probabilities rather than expectations.
There have been some papers devoted to the probability criteria for
various rewards. References [11, 12] studied the percentile performance
criteria for the limiting average return. References [8, 13] considered the
threshold probability criteria for discounted MDPs and focused on the
properties of the optimality equations without discussion of the existence
and properties of the optimal policies. We are further motivated to
investigate the stochastic order [3-5, 10, 13—-14] optimization problems,
mainly on the distribution function criteria for nondiscounted first arrival
target total reward [9, 15-22].

In this paper, the target level problems are recast into the total reward
and optimal stopping setting. The target is a prescribed set of system
states, corresponding to the failure set in reliability applications. Once the
system is in one of these states, the decision process is terminated.
Different terminal states may have different exit rewards. For a policy 7,
the first arrival target total return W(w) is the sum of single stage rewards
plus the exit reward upon system’s first visit to the target. The objective
function of this model, V(s 1), is defined as the probability that the total
reward exceeds a certain reward level ! when the initial state is i. For
example, the optimal regulation of a hydropower station reservoir should
be to maximize the probability that electric power generation is more than
some given value under normal water levels. The general optimization
model is to find a policy 7 that maximizes V(s x) for every initial state i
and some return levels of interest. Three classes of the set of these levels,
namely, the infinite interval, a finite interval, and a single point, are
studied in this paper.

We begin by describing these models in Section 2. The basic recursive
properties of the objective functions are shown in Section 3. The convex
combination and various cut-and-paste properties (in the spirit of [23]) of
the optimal policies are presented in Section 4. The value functions and
the optimal action sets are introduced in Section 5, and the optimality
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equation and the optimality conditions for all three classes of return level
sets are established. These results are refined in Section 6 for finite state
space and action space. It is shown that nonstationary deterministic
optimal policies must exist for the single point optimization problem. If a
finite /countable intersection of the optimal action sets is not empty, then
the finite interval /infinite interval optimal policies must exist. An algo-
rithm is developed for computing the value functions and the optimal
action sets, from which any optimal policy can be derived. In Section 7,
numerical examples and computational experiments are used to illustrate
the existence and structure of the optimal policies for these models. The
optimality constraints on system parameters are probed as well.

2. MODEL DESCRIPTION

Let S be the state space with countable system states, denoted by
S =1{0,1,2,...}. Foreach i € S, A(i) is the set of all possible actions when
the system is in state i. A(i) is also countable. Let A4 be the action space or
control space, where A = X ;. ¢A(i). The transition law of the homoge-
neous controlled Markov chain is g(j,, ¢ 1jo,@gs - 1ju@,) =G, 41|
Jjpa), n>=0j. €8, a €A()0<k<n,j, , €S Leth, denote the
history of the process up to stage n, h, = (jy, ag,...,j, a,), jx €S, a; €
A(j,), 0 <k < n. Throughout the paper, i_, is assumed to be empty.
H, = {h,} is the set of all possible n-stage histories. A policy is a series of
decision rules, denoted by 7 = (7, 7y,...,m,,...), where w(a, | h,_,j.)
is a probability measure on A(j,). Given an initial distribution and a
control policy 7r, an MDP denoted by (Y, A) = {(Y, (=), A, (7)), n > 0} can
be uniquely determined with probability 1, where Y, (ar) and A, (ar) repre-
sent the state and the action at stage n, respectively. Let the policy space
IT = {7} be the set of all policies. In particular, f~ = {f, f,...} is said to
be a deterministic stationary policy where f is a decision function mapping
the state space S into the action space 4. Let F = {f} and IT1¢ = {f*} be
the set of all of the decision functions and all of the deterministic
stationary policies, respectively. For n > 0, 6, is called a history-dependent
decision function if for any given h,_, € H,_,, 6,(:1 h,_,) € F. A policy
that is made up entirely of history-dependent decision functions is deter-
ministic but not stationary.

The general optimization models for the first arrival target distribution
function in discrete time are specified by the nine-tuple {S, 4, ¢, S,, T, r,
e, W, L}, where S, C S is the target set; T is the first arrival time at the target
set Sy, r is the one stage running reward function in the nontarget set
S, =8 — S,; e is the exit reward function or terminal reward function in the
target set S,; W is the total return until the first arrival time T. The objective
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function V.(m, x) is the remaining distribution function of W. For any
policy 7 € 11, let

T=inf{n:Y(m)€S,,0<k<n—1Y,(7)eS,n=>0; (1)

W(m) = ) ZTilr(Yn(W),An(ﬂ)) +e(Yr(m)); (2)
Vi(m,x) = P{W(m) >x|Yy(m) =i}i€ S, xER, (3)

where R is the set of all real numbers.! Obviously, T = 0 if Yy(7) € S,;
T = + if the set in (1) is empty.? The states in S, are assumed to be
absorbing, i.e., there exists an exit decision function y, such that the action
x () will be used whenever the system reaches i € S, and ¢(i | i, (i) = 1.
L is the return level set of interest in optimization. A policy 7* is optimal
for the first arrival target distribution function in L if

Vi(m*, x) = Vi(m, x), Vrell, ieS, xe€L. (4)
Let I1*(L) be the set of all optimal policies,

I*(L) = {m*:Vy(m*,x) 2 Vi(7,x), Vmell, i€S, xel}.

(5)
IT*(L) is a nonincreasing set function of L:
I*(Ly) c (L), L, cLy. (6)
Moreover, for any index set K,
m( U L) = 0 0x(Ly). ™)

kekK keK

In particular, three classes of L are considered in this paper:

I. L = R for the complete stochastic order optimization model.
I. L =1[0,1], I > 0 for the local stochastic order optimization model.
II. L = {1} for the single point stochastic order optimization model.

The reward functions are assumed to be nonnegative; thus L = R in case |
can be reduced to L = [0, + ). From (6) and (7), it is straightforward to

! As seen in this definition, the objective function is nonlinear with respect to a constant
shift in the running reward functions. If r is increased by a constant ¢, then the objective
function becomes P{W () + Tc > x | Yo(w) = i}. Determining the effects of a constant shift
in running rewards is still an open problem.

2 In this case, Vi(m, x) = 1 for all x.
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show that
I*([0, +)) c I*([0,/]) c II*({x}), VO<x<I< +», (8)
and

([0, +e)) = N 1*({x}). (9)

x€[0, +x»)

The above models characterize decision and optimization problems in
several important application areas. For reliability engineering, let the
target set S, correspond to the set of all failure states, and S, corresponds
to the set of all running states. To maximize the objective function V(#, x)
is to find an optimal policy to control the system toward yielding the
desired outcome level until it breaks down. If a decision-maker has a profit
goal in mind, he might want to use the single point stochastic order
optimal policy, which reaches the given level of profit with maximum
reliability. If he is not sure whether this level is reachable, for instance, if
the chance of earning this much profit is unacceptably small, he might
conservatively consider using the local stochastic order optimal policy,
which ensures the maximum reliability for any profit below this given level.
This approach can be regarded as an extension of multilevel optimization
in many applications. For example, the probability of generated electrical
power being more than a should be no less than 0.95, while the probability
of the power being more than b, b < a, should be no less than 0.98, etc.
Since these values, 0.95 or 0.98, might be impossible to achieve, a reason-
able approach is to maximize both the probabilities of [ > a and [ > b,
where [ is the generated electrical power. The ideal and dominant optimal
policy is the complete stochastic order optimal policy, which consistently
provides the maximum reliability for any outcome level.

3. BASIC PROPERTIES OF THE OBJECTIVE FUNCTIONS

In this section, the recursive equations of the objective functions are
derived. With the assumptions of positive running rewards, it is shown that
the objective function of any policy and any given level is determined by
the first finite stages’ decision rules.

First we introduce some notation and assumptions®:

r,(i) =inf{r(i,a): a € A(i)}, i< S
Foin = iNf{r, ()1 i € S1}; epin=inf{e(j): j € So}; (10)

3 Throughout the paper, a subscript small m denotes some inferior limit/minimum value,
and a subscript capital M denotes some superior limit/maximum value.
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L,(0) = (r,(i) + epn)I(i € Sy) +e(i)I(i € S,);
Lin = Inf{1,,(i)1 i € 81} = roin + €min- (11)

In the above, I is the indicator function: I(True) = 1, I(False) = 0. The
reward functions are assumed to be bounded: r,,> 0, e, =0,
sup{r(i,a): i € S}, a € A(D)} < B; suple(i): i € S,} < B. To simplify nota-
tion, the definition of the running reward function is extended to the
target set, i.e, r(i,a) =0, Vi€ S§,, a € A(). Let ne N ={0,1,2,...}.
For 7 = (mg, my,...,7,,...) €I, " = (ay, 7,,...,m,_,) denotes the
truncation of 7 to n stages. Given history h,_,, "1 = (gl -1, 00)
denotes the n-remainder policy, where

Tl gy i) = Tyl gy g ),
h, ,€H, Jk €S, hi_y € H 4, k= 0.

(12)
Let "1 = ("7: 7 € M} and #") = (=, m,, ,,...) for simplicity.
THEOREM 1. For any 7w = (my, 7y, ..., m,,...) €11,
Vi(m,x) =1(e(i) >x), VieS§,, xe&(—=» +»); (13)
Vimx) =1 YieS, x<L(i); (14)
Vi(m,x) = X mo(ali) Xoq(jli,a)Vy(m@?, x —r(i,a)),

aeAG) jes

Vies, x=1,(i), (15)

where 1, (i) is the least total reward for initial state i and " = "o is the
remainder policy after the zero-stage history hy = (i,a), i € §;, a € A®).

Proof. (13) and (14) follow from the definition of V{(w,x) and the
nonnegativity of W(a). Here is the proof for (15). For i € S}, x > [,(i),
from the homogeneity and the Markov property of g, we have

Vi(m,x) = PIW(m) > x| Yo(m) = i)

=P{W(7T) >x, U (Ay(7) =a)

a€A@)

Yo(7) = i}

Y mo(a | i)P{W(Tr) > x,

acAG)

U (Yu(7) =J)

JES

Yo(m) =1,A0(m) = a}
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= L m(ali)
acAG)
X Y q(jli,a)PW(m@2) >x —r(i,a) | Yy(7) = j}
jeS
= ¥ wmali) Zq(ilia)V (a9, x - r(i,a)).
acAG) jEeS
|
CoroLLARY 1.1. For any @ = (my, my,...,m,,...) €I, i €S,, and
x>1,0),

Vimx)= ¥ w(am{ Y q(j1ia)I(e(j) > x - r(i,a))

acA®G) JE€So

+ 2 q(jli,a)Vy(m@?, x — r(i,a))}. (16)

JESy

Since the states in the target set S, are assumed to be absorbing, (15)
holds for i € S,. In other words, as 7,( x() | i) = 1, q(i | i, x(i)) = 1, and
r(, x(@) = 0, Vim, x) = L,c qpymola | DZ;c5q( 1 i, Vi(m®D, x —
r(i,a)) = V(@9 x) = I(e(i) > x). Thus Corollary 1.2 follows.

CoROLLARY 1.2. For any @ = (mwy, my,...,m,...) €1, j, €S8, and
x >1,(jo),
VI'0(7T’x)
= Z Pﬂ-{hn—l'jn |jO}I/jn(7Th”71’x - ()D(hn—l))' n= 0'
hn,leH%l’/”eS

(17)

Where hn—l = (jO’ aO’ e 'jn—ll an—l) € Hn—l' h—l = @, Pﬂ'{hn—l’jn |]0} iS
the transition probability from initial state j, to state j, via history h,_, under
policy m, and ¢(h,_,) is the total reward for history h,_,, i.e.,

P‘n-{hn—lljn |]0}
= o k>< lwk(ak R 10 0i)qCiken Vi i) PAR_ 1, o Lo} = 15
(18)

e(h,_1) = > r(Jioax), e(h_;) =0. (19)

O<k<n-1
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Therefore, the objective functions of any two given policies should only
be compared for i € §; and x > [,,(i). The optimization problems for the
complete stochastic order, the local stochastic order, and the single point
stochastic order can be simplified to (20), (21), and (22), respectively:

V(m*, x) 2 Vi(m,x), Vmell, i€S,, and x < [l,(i), +=);
(20)

Vi(m*, x) = Vi(m, x), Veell, ieS, xe][l,(i),!]; (21)
Vimed) = Vi(m D), Veell, ies, I=1,(). (22)

THEOREM 2. Given i€ S, and level 1, 3n(i, 1) >0, st. Vo=
(7o, Ty, ey L) eIl Vi, l) only depends on ad, D where*

E(i’l) = [(l_emin _rm(i))/rmin]' (23)
The function [ x| is the smallest integer greater than or equal to x.

Proof. Given i € S, and level [, V& = (7y, 7y,...,m,,...) €I and
n =0, V(7T x) = Zh” L€ H, 1], esPh, 1], |]’0}I§,,(7Th"71: x — ¢(h,_),
ag, ..\ j,_1) € H,_, jo =1i. Given q, PAh,_,,j, | i} is deter-

hoig by o w2 (U= e — 1 (D)o = inflic: [ — [r, ()
+ (k= Dryin] <lpih Vi(m@"2,1 — o(h,_)) = 1foranym €11, h,_, €

H,_ 4, j, €Sy Thus, V(Tr ) is determined by (2Dl

n—

CoROLLARY 21. Given i €S, and n € N, 3l(,n), st Vo=
(g, 7., ...) €, x < (i, n), Vs, x) only depends on "\, where

[(i,n) = sup{x: n(i,x) =n} =epin + 1 rpin + r,,(i). (24)
Defining (i, n) in (24), an alternative definition for n(i, /) is
n(i,l) =inf{n: I(i,n) >1,n = 0}. (25)

Obviously, for any i € §;, n(i,!) is a nondecreasing function in /, while
(i, n) is a linearly increasing function in n. Furthermore,

n(id(im) =n,  L(in(i0) =1 (26)

We assume n(i, /) = 0 and [(i,n) = +« for any i € S, any real number /,
and n € N.

* The property that the objective function of any finite level is determined by the decision
rules of a finite number of stages is guaranteed from the assumption r,;, > 0. There is much
more work to do when r,,;, = 0, since it changes some properties of the model, for instance,
the objective functions are no longer recursive at some (i, a) = 0.
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Now, for any i € S, n(i, 1) is called the truncation stage number for the
initial state i and the level I; I(i, n) is called the reachable return level for
the initial state i and the stage number n. Therefore, only the decision
rules of a finite number of stages starting from the initial stage need to be
considered in the local and the single point stochastic order optimization
models.

4. CONVEX COMBINATION AND CUT-AND-PASTE
PROPERTIES OF THE OPTIMAL POLICIES

To simplify notation, forany fe F, w1Il,i € §;,and j € S, let

r(i f) =r(i f(0), q(ilif) =q(jlif(i),  a@D=atio,
Vilfox =r(i, ) = Vi(f% x = r(i, f(1)))- (27)

THEOREM 3. If 7 = (mwy, 7y,..., 7, ...) € II*(L) and a decision func-
tion f satisfies f(i) € A, (i) for any i € Sy, where

A, (i) = {a: a € A(i), mo(a | i) > 0}, (28)

then fa™ = (f,7y,..., @, ...) € II*(L).

Proof. For a decision function f with f(i) eA (i) for any i €S,
because € ITX(L), Vi(m, x) > Vi(fat, x) = X,c5 q(li, V(@D
x—r@, f)forany i e S, and x € L, WhICh implies

Vi(m, x) > Sup{ Ya(jli,a)V(m®® x —r(i,a)): a EAwo(i)}' (29)
jES
On the other hand,

Vim.x) = X my(ali) Xa(jlia)V(a@? x = r(i,a))

aEA,TO(i) jES

< sup{ qu(j li,a)Vy(7" 9, x = r(i,a)): a eAWU(i)}. (30)
jE
Combining (29) and (30) yields
Vicr. ) = sup{ £ q(j 17,000 x (i) a € 4,)).
erel'[*(L]), i€s, xelL. (31)
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Now we will show V (7, x) = V,(fal!], x) forany i € S, and x € L. If
this does not hold, then there must exist some i € S; and some x € L such
that V(fmtt x) < Vi(m, x), i.e.,

Yq(jli, Vi(a" D, x = r(i, f))

JES

< sup{ Y q(jl L,a)V(w" 9, x —r(i,a)): a EA,,O(i)}. (32)

jES
Thus,
Vimx)= ¥ mali) ¥ a(ilia)V (a2, x - r(i,a))
acA, (D {f() jes
+ ao(f(0) 1) Xoq(j i, fYV(m D x —r(i, f))
jeS
< Sup{ Yoq(jli,a)Vy(m®®, x —r(i,a)): a eAWo(i)},

JES

contradicting (31). Hence Vi(w, x) = V.(fa", x), fa e II*(L). 1

Let w = (my, mq,...,m,, ...) €II and K be some finite or countable
index set. If there is a list of numbers {«,(k): a,(k) = 0, %, c ca, (k) =
1,n >0,k € K} such that m, = ¥, _ x (k) ,, n > 0, where {, , is the
decision rule at stage  in policy £, = (£ o1 e 101 eono-- - ) k € K, then
7 is called the convex combination of the policies {,, k € K}. In particu-
lar, if X, c xmo(f.(i) | i) = 1, then = is called the convex combination of
the policies {f, 7! = (f,, 7,...,m,...), k € K}.

CoroLLARY 3.1. If w= (my, mq,...,m,,...) € II*(L), then w can be
decomposed into a convex combination of optimal policies such as fm!! =
(f,7,...,m,...) in Theorem 3.

Theorem 3 is valid for any return level set L. It shows that the first
decision rule of any optimal policy need not be randomized. In other
words, actions at the first stage with selection probability greater than zero
can be assumed to be equal in producing an optimal policy. For complete
and local stochastic order optimization models, if an optimal policy exists,
then a deterministic stationary optimal policy must exist. This further
result will be established in Theorem 4 and its corollaries after the
introduction of the concept of concatenated policies below.

A concatenated policy is a hew policy made up of decision rules from a
set of known policies. For example, Theorem 3 shows a concatenated
policy of decision rule f and the 1-remainder policy of #. This concatena-
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tion can continue. Let f F and == (f, 7y,...,m,...) € Il. f= is the
concatenated policy of f and a: fr=(f,f,»®,...,z®,...), where
a®C1i, fW), h,_y,j)=mClh,_ 1)) Vi, j, €S8, hn,1 € H,_,. Without
any confusion, fm can be written as (f,f, =, ..., m,...) for short.
Throughout the rest of the paper, detailed definitions for each stage of a
concatenated policy will be omitted, and the policy is given by linking each
composite policy’s stages together.

THEOREM 4. For L =[0,+») or [0,1], if m=(f,7(,...,m,...) E
I1*(L), then fo = (f, f,my,...,m,,...) € II*(L).

Proof. For L =10, +%) or [0,/], because 7= (f, 7,...,m,...) €
Im*(L), for any i S, and x €L, Vi, x) > V(fm, x), Vim, x) >
V(m™M, x). Therefore, Vi(fm, x) =X;c5q(j|i, V{7, x —r, ) =
Eicsq( i V(M x —r(, f) = Vi(m, x). Thus Vi(fm, x) = V(m, x),
implying fm e I1*(L). 1

As seen in the proof, if L = {l}, V. fm,1) = V/(ar, 1) cannot be obtained
from the recursive equation, since V,(m, x) > V(7! x) does not hold for
x < L. 1t will be shown in the next section that single point stochastic order
optimal policies are generally not stationary.

CoROLLARY 4.1. ForL = [0, +) or [0,1], if m = (f, 7y,..., m,,...) €
II*(L), then f~ € II*(L).

COROLLARY 4.2. For L = [0, + ) or [0,!], if TI*(L) # O, then 3f € F,
st 7 e II*(L).

COROLLARY 4.3. For L = [0, +) or [0,1], if w € TI*(L), then 7 can be
decomposed into a convex combination of some deterministic stationary
optimal policies.

Therefore, for both complete and local stochastic order optimization
problems, if the optimal policies do exist, then at least one deterministic
stationary policy can be derived from the initial decision rule of an optimal
policy. The existence ensures that the optimal policies can be discussed in
the deterministic stationary policy set I1¢ instead of the whole policy set
I1.

Another result of studying the concatenated policies is the cut-and-paste

properties of the optimal policies. For 7 = (7, 7q,...,m, ...) € Il and
m' = ()}, 771,..., @,...) €11, let "7z’ be the concatenated policy of
"rand 7' Mg = (g oo Ty T T ey T ),

THEOREM 5. For L = [0, +) or [0,1], if =, w' € II*(L), then M’
ell*(L),n=1,2,....
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Proof. Given L =0, +%) or [0,1], since =, w' € II*(L), for any
]0 (S S and x > m(]O) V([n]7777' .X') Zh 71eH 1 n ESP {hn ll]n |]0}
I//"(’F x = gD(hn l)) = Eh 1 EH, 1], ESP {hn l']n |]O} V(W hX -
@(h,_,)) =V, (m, x). Thus V([ I’ ,x) =V, (m, x), Mer e H*(L) |

COROLLARY 5.1.  For L = [0, +%) or [0,1], if = € I*(L), then "7 €
*(L); Mgl ' n e TIX(L); n, k, Ny Ry i, =1,2,....

CoROLLARY 5.2. For L = [0, +) or [0,1], if m= (my,7y,...,m,,...)

€ MM*(L), then my'm= (mwy, ..., 7o Toy Tqye-v,Myy...) € I(L), n =
1,2,..., 75 € I~(L).

For the complete and the local stochastic order optimal policies, we can
cut off an arbitrary number of stages from the initial stage. The concate-
nated policy of these pieces of the optimal policies is still an optimal
policy. In particular, the initial stage decision rule, which may be random,
can constitute a stationary optimal policy. Now, can the cut operation be
relaxed from any stage instead of the initial stage? Theorem 6 gives a
sufficient condition to shift the cut properties of the optimal policies.

Given j € S;, n > 0, and policy , if there exists some state i € §,, s.t.
P{Y, () =j | Yy(&) = i} > 0, then the state j is said to be n-step arrivable
under policy .

THEOREM 6. For L =[0, +) or [0,1], if w € TI*(L), each j € S, is
n-step arrivable under m, then the n-remainder policy ="} € TI*"(L — n - r,),
where ry, = sup{r(i,a): i € S;,a € AW}, L —y ={x —y: x € L}.

Proof. If the statement is not true, then 3j € §,, x€L —n-r,, st
Vi, x) > V]-(Tr["], x). Since j is n-step arrivable under 7, there exists
some state j, € S, s.t. P{Y, () =j | Yo(7w) =j,} > 0, implying: 3h,_, €
H, 4, st Pflh, y,jlj} >0 Then V,("am, x + o(h, ) > V(7w x +
<p(h _1)), contradicting < II1*(L), since o(h,_) <n-ry,. Therefore
aeI*(L —n-ry). 1

COROLLARY 6.1. For L =[0, +%) or [0,1], if m € II*(L), and each
j €8, is n-step arrivable under , then =, € H*(L —nry).

Therefore, for a complete stochastic order optimal policy, if all running
states are arrivable at some stage, then the decision rule at this stage can
also constitute a stationary optimal policy, while the remainder of the
policy from this stage is still optimal.

5. THE VALUE FUNCTIONS AND THE
OPTIMALITY CONDITIONS

The preceding section discussed the various properties of optimal po-
lices based on the existence of the optimal policies. This section examines
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the existence conditions of the optimal policies. To this end, the properties
of the value functions need to be studied first. For any state i € S and
x € R, let V*(x) be the value function, where

Vi#(x) = sup{V(m, x): w II}. (33)

Property 1. Forany i € S, V;*(x) is nonincreasing and right continuous;
and,

V¥(x) =1I(e(i) >x), Vie S, x € (—», +x); (34)
V*(x) =1, VieS, x<I[,i); (35)

V() = sup{ T a0 IV (e = i) F € ),

JES

Vies,, x=x1,(i). (36)

Property 2. If TI*(L) # &, then Var € TI*(L), Vi(ar, x) = V*(x) for all
i€ S, and x € L.

Property 3. If TI*(L) # & and P{T < 4+« |Yy(w) =i} =1 for any
i €8, and 7 € II, then lim V*(x) =0forany i €8,.

X — +x

Proof. Since sup{r(i,a): i € S;,a € AW} < B, suple(i): i € S} <B
and meII*(L) # &, for any ie S, xeL, Vim, x)=PW(w)>x|
Yo(m) =i} < P{TB + B> x| Yy(w) =i} = P{T >x/(B + 1) | Yy(m) = i}.
Because P{T < +x | Yy(7m) =i} = 1forany i € §; and = € II, the right-
hand side of the above inequality will approach 0 as x approaches + . By
Property 2 it follows immediately that lim . V;*(x) =0. |

Properties 1 and 3 show that the value functions are the optimal
remaining distribution functions under very weak conditions.

Property 4. For L = [0, +%) or [0,!], if TI*(L) # &, then g € F, s.t.
Vg, x) = V*(x) =sup{Vi(f,x): fe F}forallie S, and x € L.

Proof. For any i€ S; and x € L, V;*(x) = sup{Vi(m, x): w11} >
sup{Vi(f, x): fe F}. If TI*(L) # &, where L =[0, +%) or [0,/], then
g € I*(L), s.t. Vi*(x) = Vi(g, x) < sup{V(f, x): f € F}, completing the
proof. 1

Next, the optimality equations will be derived by casting the optimiza-
tion problem into a more general model, namely, the e-optimization
model. Given a small positive number &, 7 is called an e-optimal policy
for the first arrival target distribution function if

V¥ (x) —e<Vi(m? x) <V*(x), VieS, xeL. (37)
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Let IT*(L, ¢) be the set of all s-optimal policies:

I*(L, ¢)
= {7 V¥(x) —e<V(m®x) <V*(x), VieS, xel}
(38)
IT*(L, &) is nonincreasing in L while nondecreasing in &:
m*(L,, &) clI*(L,, &), VL,CLy;
II*(L,&) clI*(L,&,), Ve <e,. (39)
Similar to (7), for any & and index set K,
H*( U Lk,a) - N T*(L,, &). (40)
keK kekK
In particular,
I*(L) = II*(L,0) cII*(L, &) cII*(L,») = 1I; (41)
IM*(L) clim,_ JII*(L, ¢). (42)

THEOREM 7. For any given [ and & > 0, IT*({l}, &) + O&.

Proof. Given [ and ¢, for each i € S;, there must exist some policy
mlil e 10, st V*() — e < Vi(arlil, 1) < V*(I). Let w° be a composite
policy of these policies: {w[i],i € S,}, such that for any history beginning
from state i, policy =[] is used, i.e., w,(-| h,_,, j,) = =[il,C-| h,_,, j,) for
any h,_,= (g ag- vjo-pna, )EH |, j,=i,n>=0 Thus 7°e
m*{},e) 0. 1

Therefore, there always exists an e-optimal policy for any single point
stochastic order g-optimization models.

THEOREM 8. Foranyi € S, and x > 1,,(i), V;*(x) is the unique solution
that satisfies the initial conditions of (34) and (35) and the following optimal-
ity functional equations:

Vr(x) = swp{ T a1V (= f): fEF). (43)

JES

Proof.  Suppose there exists f € F, i € §;, x > 1, (i), such that V;*(x)
<Xcsq(li, fIVF(x = r(, f)). Let « be such that 0 < a < X, 5q(;j |
L, VF(x —r(, f) — V*(x). By Theorem 7, 37 € [I*({x — (i, f)}, @),
st. Vifm,x) =X;csq( i, ) Vim, x —r(, ) >L,c5q( 11, f) Vi*(x
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—r(i, f)) — a > V*(x), a contradiction. Therefore, V;*(x) > sup{¥;.
q(j 11, HHV*(x —r@, f)): f € F}. Combining this result with (36) proves
the optimality equation. The uniqueness of the solution comes from the
initial conditions in Property 1. |

THEOREM 9. MI"(L) # J o IAmel, st. Vie S, x €L, Vm, x) =
sup{Z; c sq(j 1 i, PV (x = i, f)): f € F).

COROLLARY 9.1. For L =[0, +®) or [0,1], [I*(L) # & < Jg € F, s.t.
Vies, xeL, V(g x)=sup{Z;c5q(jli, HV*(x —r@Q, f)): f€F}).

To link the optimality equations with action selection in decision, we
introduce the concept of the optimal action set. Given i € §; and x €
(=00, +), let A*(x) denote the optimal action set:

A (x) = {a V2 (0 = a1 W (= r(i) a 4G} (40

jES

Obviously, A%(x) = A(i) when x < [,(i). We assume A%*(x) = {x(0)}, i €
Sy, x € R. Given [ >0, H*(]), n > 0 is called the optimal history up to
stage n toward level I, where

H (1) = {hg = (jo.a0): jo € S.a, € A% (I — @(h_y)) = A%L(1)}, (45)
Hy (1) = H (D{(nra,): by € HEo(D), ), €8,
a, € A5 (I1-¢(h,_1))}. (46)
For h,_, = (jo,ag,---\Ju_1.a,_1) € H,_,, let
P{h,_1.jn o} = max{P{h, 1, j, |jo}: = € II}
X 1‘1(jk+1|jk’ak)' (47)

O<k<n-—

By induction, the optimality equation can also be written as
I/];k(l) = o Z P{hnfl’jn |.10}I/]:k(l - go(hnfl))‘

h, ,eH* (I),n=12,.... (48)

THEOREM 10. For L = [0, +») or [0, 1],

LML) # B e N,., A # DS,

. If N,c, AT(x) # I, then f* € TI*(L), where f(i) € N , o AT (x),
i €S,
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Proof. “<":1fVieS, N,c; AT (x) # T, let f be a decision func-
tion such that f(i) € N,.; A¥(x), i € §,. From the recursive equation
Vif,x) =2,c5qG i, OVI(f, x —r(, ), V(f, x) = V;*(x) forall x € L.
Therefore f~ e TI*(L), IT*(L) # <.

“= " Given [, for L = [0, +) or [0,!/], if II*(L) # &, by Property 4,
AfeF, st Vies, xeL, V(f x)=V*x). Thus V(f, x) = £,.5q(j |
LWV x =G ) =E,c5qG i, HVF(x —r(, f)) = V*(x), implying
fG) € A¥(x), i € S;, x € L. Therefore f(i) € N, AT (x) # T, Vi € §,.
1

In addition to the existence of a deterministic stationary policy provided
in Corollary 4.2, Theorem 10 also gives the form of that policy. If the
complete or the local stochastic order optimal policies do exist, then there
must exist deterministic stationary optimal policies and they can be derived
from the intersection of the optimal action sets over L. For the single
point stochastic order optimization model, the optimal policies may not be
stationary.

THEOREM 11. Given [,

L I # @ o A5~ ¢, ) # B, by y = Goodgs -y
a, _ 1)6 *1(1) jn65110<n<n(j0,l)_l

. if Az - go(hln D)+ Dforany h, , € H* (), j, €8,0<n<
n(jo, 1) — 1, then " = (0, 0,,..., 0,,-1) € II*E1D), where n,, (1) =
sup{n(jo, D: jo € Sy},

Hn(jn |hn71) EAT,,(Z o g(‘)(hnfl))’ hnfl = H* 1(1)
O<n<n(j,l)—-1 j, €8, (49)

In addition, there must be
mhere ({1 = @(h,-1)}). b, 1 € H (1),  n=0. (50)

Proof. By Theorem 2, V€ II, V(s x) only depends on ¢z
hence the optimization for a given level [/ can be restricted to [”M(’)]H
where n = n,, (1) = sup{n(jy, 1): j, € S,}.

“e=" Let m =n(jy, D), jo€S,. For any h, .= (o, a9, s Jpm_1,
a,_1) €H, 4, since [ — ¢(h,, ) <y, V(@11 — e, )=1=
V]*(l — go(hm M, j. €8,, me< II. Hence, w1 e H*({l — ¢(h,_ ) for
n > m. Combining this condition with (48) and (49), we have V(7T n=1 ] —
o(h, 1)) =V#( = @h, ), h, ; €H! (D,n=m—1,..0,j, €8,
ie., wnlel'[*({l—go(h 1)})n—m—l O.ASforn=O,7Th1—7T

e TI*({1). Thus Dl € T, (1)) # 3.
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= " Induction. First we show that (49) and (50) hold for n = 0. By
Theorem 3, Af € F, w" €11, st. fa"o € II*({I}). For any j, € S,, be-
cause

I/]'o(fﬂ-ho’ l)

Y q(iy Lo, )Vi(m"o, 1 — e(hy))

J1€S
V(1) = sup X a0 o V(1= ) rerl,
(1)

Vi(z", 1 — o(hy)) = V(I — o(hy))  forall j€S. (52

Otherwise, V,(fz",1) <X, c sq(jy | jo, VU — o(hy)) < V;*(D), a con-
tradiction. From (52) and (51) ho e TI*({l — @(hy}), f(jy) eA (D), hy =
o, fGo) € HED, j, € S, Next, suppose (49) and (50) hold for 0 <k < n,
ie, 3m = (00, 01,..., 0, 7,1, ) O,y T hy_y) € AU — (1)), ji €
S, m' e I*{l — gp(h M), h, € Hf (D). For each glven h, € H*(1), apply
Theorem 3 to #'» e Im*{! — @(h,)}). Then, similar to (51) and (52),
30, ,(1h,) EF, w1 e, st 0, 7" € l*{l — ¢(h,)}). Hence for
any j,,; €8, we derive 9 +1(.]n+l lh,)eAr (I- qo(h )) and 7' €
I*[{/ - ¢(hn+1)}] n+l (hn’]n+l' n+1(Jn+1|h ) € HY (D Let o’
= 6, ,m"+1. Then (49) and (50) also hold for k = n + 1, completing the
induction. The existence of such optimal policy implies A%(I — ¢(h,_,))
+O h, ,€H* (D,0<n<n(y,,D-1j,€8. 1

CoroOLLARY 11.1. Given I, TI*({I}) + & = II*({I — ¢(h,_)}) + &,
h, ,€H* (D, n=0.

Therefore, if there exist the single point stochastic order optimal policies
for some level [/, there must exist a finite-stage nonstationary optimal
policy that is made up of history-dependent decision functions. Moreover,
since each of its n-remainder policy 7" is optimal for level [ — ¢(h,)
along the optimal history #,,, there exist optimal policies for many single
levels below [. Consequently, the existence of the optimal policy for
L = {I} is not only determined by the optimal action set on L, which is the
case for the complete and local stochastic order optimization models, but
is also dependent on some optimal action sets outside of L.

6. OPTIMIZATION FOR FINITE STATE SPACE
AND ACTION SPACE

The various properties and the existence conditions of optimal policies
presented above lead to the following questions. Are there any sufficient
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optimality conditions? Are these conditions computationally verifiable?
These questions are explored by examining the model in finite state space
and action space. For finite state space and action space, W(wx) is a
discrete random variable for any given policy 7r. This is because each stage
has the same number of finitely many possible rewards, either r(i, a),
i8S, aecAG), or e(j), j €S, with r;, > 0 and e, = 0. Therefore,
when the initial state is i € S,, there are only finitely many possible values
for the first arrival target total return W(s) in any return level interval

[1,,(i),1]. These possible values can be denoted by an ordered list w;:
w, = {wi[k]: w[k] <w[k+1],k=0,1,2,...}, (53)
sup{k: w,[k] <x,k=0,1,...} < +  forany x < +o. (54)

It is obvious that w, = {e(i), +} for any i € S,. The objective function
V(ar, x), which is the remaining distribution function of W(w) for initial
state 7, is thus determined by a countable set of values {V(7, w,(k)): k =
0,1,2,...}, where

Vi(m,x) =1, xe(-»w[0]), w[0]=1,(i), ie€S, well;
(55)

Vi(m,x) = V(mow kD), x e [kl wlk+ 1]);
k=01,2,.. ieS, =well. (56)

From (56) and (15): V(7 x) = £, c 4ymola | DX, c 5q(j | i, V(" ?, x
— r(i, a)), there must be

Vi(m"® x —r(i,a)) = V(a2 wlk] = r(i,a)),
Va € A(i), j€S, xe<[w[k]wl[k+1]). (57)

Otherwise, 3a € A(i), j € S, x € [w[klwlk + 1D, w € II, s.t. V(7" 9, x
— r(i, ) # V(w9 wlkl — r(i, @), which results in V7, x) #
V(m,w]lk]), contradicting (56). The constraints in (57) lead to a way to
compute w;. Suppose {w;lkl: k =k;, k; —1,...,0,j € S} are all known
currently. The goal is to get wk; + 1], i € S; from these known values.
Let
ki(i,a) = min{k: wj[k] > w[k;] —r(i,a), k= kik;—1,... ,0},
i€S,, acA(), jeS. (58)
k,(i,a) = k; + 1 if the above set is empty. Let

8,(i,a) = (w[k;(i,a)] —wlk] +r(i,a))I(k;(i,a) <k;). (59)
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Now, for x & [wlk,] — r(i, @), wlk] — ri,@) + 8,3, @), V(' x —
r(i, @) = V(z“ 2, wlk,] - r(i, a)). Let

8(i) = min{8;(i,a): j€ S, a € A(i)}, €S, (60)

Then, by Eq (15), Vi(w, x) = Vi(m,wlk;]D for x € [wlk,]wlk;]+ 8()).
Therefore,

wilk; + 1] = w,[k;] + 8(i). (61)

Let k, == k; + 1 to complete a loop from (58) to (61). This loop can iterate
until 8(i) = 0. Since k; is updated, there must be some k;, j # i, that can
be updated in the same way. Otherwise, 5(i) = 0 for all i € S,. Then,
Vi € S, 3a(i) € AG), j(i) € Sy, s.t. §;,,(i, a(@)) = 0, or equivalently, w[k;]
—r(i, a(i)) = wy,[k;;]. Notice that j(i) # i for all i € S;. As S, is finite,
{n: j"() =i,n=1i€S8}+ D Hence wlk;]=w[k;;]+r(i,ald) =

- > wlk;] + r(i, a(i)), contradicting the assumption of a strictly positive
running reward. Together with (54), it follows that any return level can be
reached in finite steps by using this asynchronous update scheme for
computing {w;,i € S,}.

Furthermore, the set of recursive equations implies a backward propaga-
tion from values of some n-remainder policy to those for the original
policy. However, to even compute the objective function value at a single
point, x, is not trivial. Roughly speaking, if there are N; states, each with
N, actions, and n = n(i, x) stages are involved in computing V(s x), then
Vi(zh, 1 — @(h,), for all h, € H,, are obtained from the initial condi-
tions (55). O[(N;N,)2"®] multiplication and additions are needed to
propagate these (NgN,)""* initial values to finally get V(w, x). An
example of Ny = N, = n(i,1) = 2 is shown in Fig. 1. Although Vj(wh", X —
@(h,)) for all h, € H, must be computed, since 7 # 7"+ in general, all of
these computations only give the value of V.(w, x) at one point x. Hence,
the computation is impractical for large state spaces and action spaces,
unless 7 is stationary.

The optimality equations, as well as Eq. (15) for stationary policies, are
self-recursive (thus the objective functions for a given stationary policy may
be evaluated in an algorithm similar to the optimization algorithm in Fig.
2). Therefore, the optimal function values may be recursively computed
from their initial conditions. The way in which the value functions are
computed is quite different from that in conventional optimization models,
for example, value iteration or policy iteration. Here the goal is to
compute function V;*(x), which is specified by a countable list of values,
not a single value V;*; the optimality equations are recursive simultaneous
equations with initial conditions, not purely simultaneous equations. On
the other hand, each of the simultaneous optimality equations is a highly
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exponential ramification

w[ Vo x-#(hy))

ho _ ¢ 1 Vl (Tl: X 1 e
Vo@"0,x-P(hg)) h=Ga0b) = vomhl x-9(hy)) -

fo=C) Vi 900y)
h1=(i,a,1,a) [ Vo(nhl,x-(p(hl))

Vi x-P(hy))
h=G.a,15) = vhl x-9(hy)

V(0 x-P(hgy))

Vi) Vi@ o) L

‘ME VoM x-P(hy))

hi .. ¢
Vo0 x-9(h) e Th)

ho=(i:b) 4|

Vi@l x-P(hy))

AR Vot

Vil x-9(hy)) -

| H=GBLE) = vowh )

Vi@hl - Phy)) i

V1(wh0 x-P(hgy)

back propagation

FIG. 1. Back propagation and exponential ramification in the computation of the objec-
tive functions. In this example, S = {0,1}, A(0) = A1) = {a, b}, n(i,x) = 2. To compute
V(m, x), an exponentially increasing number of the objective functions for 7’s n-remainder
policies at x — ¢(h,_,) are needed. Until some 7, which is 2 in this case, Vj(wh"*,x -
¢o(h,_,), j € Sy, are first known as initial values; then they are propagated back through the
recursive equations to get V,(m, x). If o is not stationary, all of these computations only give
V(m, x) at a single point x, although 20 Vj(w”"fl, x — @(h,_,)), j € S;, must be computed.

nonlinear equation involving all of the value functions for different states
and levels. Because the reward r appears inside the objective function on
the right-hand side of the recursive equations, it leads to the asynchronous
update scheme for computing nonlinear calculation steps. Using these
steps, the optimality equations are turned into a set of discrete recursive
equations.

For any i € S, since V{(m, x) is given by {Vi(ar,w[k]D: k =0,1,2,...},
V€ 11, V;*(x) is also determined by its values at w,. Let V;* = {V;*[k] k
=0,1,2,...}, where for i € §;, V;* = {1,0}; for i € §;, V;*[0] = 1, V*[k]
= V*(wlk — 1D, k > 0. Then V;*(x) = V;*[0], x € (—,w,(0); V;*(x) =
V*[k], x € [wlk — 1],w[k]), k > 0. From the way w;, is constructed in
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(58)—(61), the optimality equation becomes

Vi[k, + 1] = max{ Y q(jli,a)Vi*[k(i,a)], a eA(i)}, i€S,.

JES
(62)

Let A*[0] = A(i), A%[k] = A*(w [k — 1], i € S,. According to the defini-
tion of k;(i,a) in (58), there must be argV*(x) =argV;*[k;], x €
[wlk; — 1], wlk,D, k > 0. Thus, A¥(x) = A*[0], x € (=, w,[0]); A*(x) =
A%[k], x € [w[k — 1], w][kD, k > 0.

In Fig. 2, we are computing a function, not a number, for each initial
state. Because of self-recursion, the computational complexity of comput-
ing V;*(x) is greatly reduced to O[ N®N,n(i, x)]. To compute V;*(x), all of
the V*(y) for y < x are obtained, together with some related values for
Vj*(x), j € S;. Once the optimal action sets are obtained, the optimal
policies can be derived.

THEOREM 12.  For finite state space and action space,

I. IT*([0, + ) # T & N . A¥k]l # &, i € S,. Furthermore, [~
€ I1*([0, +)), f(i) € N ;. AT[k]

1. II*(0, /) #+ & = N Osksg(i,l)—lA?[k] * I, i € S,. Furthermore,
frem* (0, 1D, f(D) € No<g < ni -1 45 k]

. 11*({7}) # &. Furthermore, ™ = (6,, 6, ..., O, -1 - ) e
m=dn, 6., 1 h,_,) EA;‘”(I —o(h,_ ), h,_,€eH" (D j€S8,0<n
< n(j,, D — 1.

Proof. 1 and Il are restatements of Theorem 10 for finite state space
and action space. For finite state space and action space, A%*(x) =
arg V*(x) # &, x € R, i € S;. Thus by Theorem 11, TT*({/}) # &J. The rest
of 11l comes from Theorem 11. |

Hence, for finite state space and action space, the complete/local
stochastic order optimality condition given in Theorem 10 is a
countable /finite intersection of optimal action sets. If the intersection of
these optimal action sets is empty, the optimal policies do not exist;
otherwise a deterministic stationary optimal policy [~ with f(i)
N,c. A¥(x), i € §;, can be obtained. The single point stochastic order
optimal policies must exist and can be derived from the optimal action sets
on some levels related to the optimal histories.
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(* Initialization *)
For all i€ §, do:
w={e(i),+o0}, V={1,0}, k=1
End For
emin=min{e(): ie Sy}
For all i€ §;, do:
[ (D=min{r(i,a): ac A()}+e;,
wil0=l,(), V{0]=1, A*[0]=A(), k=0
End For
(* Iterations *)
$1=8-Sg={iy, iy, -, iy}
For u=11to U, let i=i, do:
Repeat
For all ac A(Y), je S, do:
k=k;; While k20 and w {kK]>w[k;]}-r(i.a), k:=k-1
ki.a)=k+1
d(i.ay={wjlk(i.,@))-w;lk;1+r(i,a) H(k(i.a)<k;)
End For
8(i)=min{8j(i,a): je€S, ac A(D)}
If 8(i)>0, then
v [kt 11=max{Ze ¢ q(ili,a)Vj* [k(i.@)], ac A()}
A k+1)=argV* [k +1]
w;lk+11:=w,[k;]+3()
kp=k+1
End If
Until 8())=0

End For

FIG. 2. Algorithm for the value functions and the optimal action sets, given S, A4, ¢,
So. 1, €.
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7. OPTIMALITY CONSTRAINTS ON SYSTEM PARAMETERS
AND NUMERICAL EXAMPLES

All of the optimality conditions in the preceding section are given in the
optimal action sets, which are obtained from the computation of the value
functions. Can the optimality conditions be given in terms of system
parameters, namely, transition probabilities and reward functions? Not
only is this question theoretically important, it might also lead to computa-
tionally verifiable optimality conditions for the complete stochastic order
optimal policies. However, the problem is not trivial, since the optimiza-
tion models are highly nonlinear with respect to the transition probabilities
and reward functions. In this section, Example 1 is first used to illustrate
the computation in the optimization algorithm and some intuitive ideas of
the optimal action selection. The optimality constraint on system parame-
ters is generalized to a special class of systems. Example 2 is then given to
show that this constraint does not hold and that it becomes harder to
figure out the optimal policies with the increasing complexity of systems.
Finally, to see how likely it is for a complete stochastic order optimal
policy to exist, computational experiments using random system parame-
ters are carried out and the number of trials, in which sufficiently large
local stochastic order optimal policies exist, is reported. These results may
shed some light on further research on these optimization models.

ExampLe 1. § =1{0,1}; S, =1{0}, e(0) =0; S, ={1}, AQD) ={a,b}. r
and g are shown in Table I. The transition probabilities from the states in
S, are omitted, as they are all absorbing.

Since there is only one state in S; and two actions for this state, there
are only two decision functions in the set F, denoted by f and g, where
f(1) = a and g(1) = b. The initial values are

wo = {0, +%},  VF={1,0}, k=1, e

min

TABLE 1
The One Stage Running Reward Function r and the
Transition Probability g for Example 1

r i=1 q(j | i, action) i=1
a 1 j=0 0.2 0.1
A b 2 ji=1 0.8 0.9

action a b
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and
wy[0] = 1,,(1) = min{r(1,a),r(1,b)} + enn = 1,
ViE[0] =1, A%[0] = {a,b}, Kk, =0.
For this example, (62) can be written as the inner product of vectors:
Vit = max{(q(011,a),q(111,a))
(V5 [ko(L, )| Vi [ka(L, @)] ), @ € A(D))
= max{(0.2,0.8) - (V5[ ko(1, a)], Vi¥[ki(L, a)]),
(01,0.9) - (V& [ko(L, )] V¥ [k(1 D)) ).

Step1: k, =0, w, ={1,...}, V* ={1,...},
wilk;] —r(l,a) =0, ko(Ll,a) =1, ki(1,a)=0;
wilk,] —r(1,b) = =1, ko(1,b) =0, ki(1,b) =0;
5(1) = min{+=,1,1,2} =1,  w,[1] = w,[0] + 8(2) = 2;
V#[1] = max{(0.2,0.8) - (0,1),(0.1,0.9) - (1,1)}
= max{0.8,1} =1, A¥[1] = {b}.
Step 2: ky=1,w, ={1,2,...}, Vi ={1,1,...},
wilk,] —r(1,a) =1, ko(1l,a) =1,k(1,a) =1;
wilk,] = r(1,6) =0, ko(1,b) =1, ky(1,b) =0;
8(1) = min{+x,1, 42,1} =1, wil2] = wy[1] + 8(1) = 3;
V#[2] = max{(0.2,0.8) - (0,1),(0.1,0.9) - (0,1)}
— max{0.8,0.9) = 0.9,  A*[2] = {b}.

Step 3: ky =2, w, = {1,2,3,...}, Vi ={1,1,09,...},
wilk,] —r(1,a) = 2, ko(1,a) =1, ki(1,a) = 2;
wilk,] —r(1,0) =1, ko(1,0) =1,  ky(1,b) =1;
5(1) = min{+x,1, 42,1} =1,  w,[3] =w,[2] + 8(1) = 4;
V#[3] = max{(0.2,0.8) - (0,0.9), (0.1,0.9) - (0, 1)}
= max{0.72,0.9) = 0.9,  A*[3] = {b}.
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In fact, since V5 (x — r(1,a)) = V§(x — r(1,b)) = 0for x = 2, V¥(x) =
max{0.8V;*(x — 1),0.9V*(x — 2)} = 0.9V;*(x — 2). Similarly, from V,(f, x)
=1, x <1 and V(g x) =1 x <2 respectively, Vi(f, x) =X, .5q(j|
LAV(f,x—rQ,f)=08V(fix—1 and Vi(g, x) =X,csq(j 11,8V,
(g, x —r(1,g)) =09V(g, x — 2). Thus Vy(g, x) = V;*(x). In other words,
g” is a complete stochastic order optimal policy. This result is consistent
with intuition. From the reward functions and the transition law, action b
is better than a because it achieves a better one stage running reward and
is less likely to fall into the target set. Hence b is always the more reliable
action for any given return level. This rule is generally true for a special
class of systems.

THEOREM 13. If S, =1{0}, ¢(0li,a) >0, i €S,, a € AG), then
I1*([0,D) # &, [ =1y + e + minfr,(j): j € 8} = A4, nA,,=G0
#J, i €8y, where A, (D) ={a:r(i,a) =ry(i),a € AW} and A, (i) =
{a: q(0 i, a) = q,,,(D), a € AU}, q,,,(i) = min{g(0 | i, a): a € A}

Proof. Given i€ S, V*(x) = max{q | i, a)I(e(0) > x — r(i, a)) +
Lics5,q(j 11, V;*(x = r(i,a)): a € A()}. There must be V;*(x) = 1, x <
ry (@) + e(0), because when a € A4,,,()), x — r(i, a) < e(0), Vj*(x —r(i, a))
= 1foreach j € S. Thus, A,,,(i) € A¥(x), x < ry,(i) + e(0). On the other
hand, since ¢(0 | {,a) > 0,i € S, a € A(), when a & A4,,,(i), there exists
some x € [r, (i) + e(0), r,,(i) + e(0)], such that ¢(0 1, a)I(e(0) >x —
r(i,a)) + Zjeslq(j | i, a)Vj*(x —r(i,a) <1 ie, a & A% (x).

Next, there must be V;*(x) = 1 — g,,,(i) for x € [r,,(i) + €(0), r,, (i) +
e(0) + min{r,,(j): j € S,}), because V;*(x — ry,()) = 1 for all j €S, and
ViFr(x) = max{y; c5.q(j | i, V" (x = r(i, a)): a € A} = max{l — q(0 |
i,a) a € A} Hence, A,,() N A, G0+ if I*(0,D) + I, | = ry, @)
+ e(0) + min{r,,(j): j S} 1

This simple rule, which selects the action with maximum one stage
reward function and minimum exit probability, fails for more complicated
systems, as will be shown in the next example. When the system becomes
even larger, the interrelationship among all states will be far more com-
plex, and it will become impossible to reach a conclusion qualitatively.

ExampLE 2. Let §=1{0,1,2,3,4,5); S, =10,1,2}; S; =1{3,4,5}, AG)

={a,b,c,d}, i€S,. e, r, and g are shown in Tables II, IIl, and IV,
respectively. The value functions are given in Fig. 3.

TABLE 11
Exit Reward Function for Example 2

ieS, 0 1 2
e(i) 0.0 45 3.0
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TABLE 111
One Stage Running Reward Function for Example 2

AD)
r a b c d
3 5.0 5.0 3.0 4.5
S: 4 2.5 6.0 5.0 4.0
5 4.0 25 4.0 2.0
TABLE IV

Transition Probabilities for Example 2

S S
g 0 1 2 3 4 5 0 1 2 3 4 5
3 0.15 00 005 015 015 05 01 0.05 0.05 0.15 0.05 0.6
M 4 00 01 01 02 02 04 005 01 005 03 03 0.2
5 01 01 01 01 02 04 01 01 01 00 04 03
A a b
3 005 01 005 04 03 01 00 015 005 02 05 01
M 4 01 01 01 04 01 02 01 01 01 02 03 02
5 01 01 01 05 01 01 01 01 01 02 04 012
AG) c d

The optimization algorithm is implemented in Mathematica. On a Pen-
tium 266 PC and Windows NT platform, it takes 42.251 s to do 150
iterations of the algorithm. After 150 iterations, k; = 1118, k, = 1122,
ke = 1124; wy[k,] = 562.5, w,[k,] = 564, w,[k.] = 564.5; Vi [k,] = 2.07
X 1072, V*[k,] = 2.01 X 1072, V#[ks] = 1.57 X 1072 The value func-
tions are step-like remaining distributions of the first arrival target total
return. Part of computed {V;*,i = 3, 4,5} are shown in Fig. 3. The optimal
action sets are given in Table V.

All optimal policies can be obtained from the optimal action sets. For
example, there is one deterministic stationary optimal policy f* for L =
[0,562], where f(3) = d, f(4) = b, f(5) = c. Since the value function values
are already very small at level 562, this optimal policy could be considered
the complete stochastic order optimal in application. Besides this optimal
policy, a nonstationary optimal policy 7 = (6,, 6,, 6,,...) could also be
constructed. Here is an example for L = {5}. First, as 0,(j, | h_,) € A%(5),
let 6,(3) = d, 6,(4) = a, 6,(5) = a. Second, as 0,(j; | hy) € A%(5 — @(hy)),
where hy € {(3,d),(4,a),(5,a)} and ¢(h,) € {4.5,2.5,4}, let 6,(j, | hy) =
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the wvalue functions

1.—'7. T T T T T T

0.8 ¢

state S
state 4

0 10 20 30 40 50 60
the first arrival target total return level x

FIG. 3. The value functions for Example 2. In the figure, the dashed line is V5*(x), the
solid line is V,*(x), and the dotted line is Vz*(x). Each curve is a step-like remaining
distribution of the total return.

a, j, € S;. Finally, as A%(5 — ¢(hy) = {a, b, ¢, d}, we simply let 6,(j, | h;)
=a,j, €S

The optimal action selections for long-term consideration could be
interpreted qualitatively. The probability of state 3 reaching the target is
0.2, no matter which action is selected. This value is smaller than that of
state 5, which is 0.3 for all actions. Notice that the state-action pair (4, b)
has a much larger one stage running reward and an exit probability of 0.2.

TABLE V
The Optimal Action Sets for Example 2

X A%(x) X A% (x) x At (x)
(—,3) {a,b,c, d} (—o0,4) {a,b,c,d} (—0o0,2) {a,b,c, d}
[3,5) {a, b, d} [4,5) {a, b, c} [2,25) {a, b, c}
[5,9) {d} [5,5.5) {a, b} [2.5, 4 {a, c}
[9,9.5) {b, d} [5.5, 564) {b} [4,5) {a, b, c, d}
[9.5, 562.5) {d} [5,5.5) {a,b,c}
[5.5,8) {a,c}
[8, 564.5) {c}

No<x<se2sA3(x) = {d} No<x<seadi(x) ={b} No<x<seasA(x) = {c}
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State 5 is the worst state, since it has less running reward and a high
probability of reaching the target. A good policy for this system is to try to
avoid state 5 and stay in state 3 and 4. Thus, b is the best choice for state 4
and c¢ is the best choice for state 5, both of which obey the rule in
Theorem 13. For state 3, although d has a smaller one stage reward than a
and b, d turns out to be the best choice for state 3 throughout all levels,
since both a and b have a higher probability of causing the system to enter
state 5 (the optimality constraint in Theorem 13 does not work here!). To
reach target states with different probabilities is also a factor in comparing
actions. The analysis here is to show that when the system scale increases,
it becomes hard to find out directly from system parameters whether the
optimal policy exists and what an optimal policy is. In addition, this
example shows that the optimal action sets remain unchanged after some
level. This phenomenon is more prominent in the following computational
results.

To see how unusual the complete stochastic order optimal policies are, a
group of computational experiments are carried out. In each trial, all of
the system parameters are randomly generated from some uniform distri-
butions. The optimization algorithm is used to recursively compute the
value function and the intersection of the optimal action sets with increas-
ing levels. The exit criterion of all of the trials is that either the optimal
policies do not exist (NA*[k] = & for some state i), or the optimal
policies exist (NA*[k;] = & for all states) and all of the value functions
have V*[k;] < 107%, which is a good approximation of the complete
stochastic order optimization in computation. At the end of each trial, two
guantities, v and [, are recorded together with an indication of whether
the optimal policies exist or not. v = max{V;*[k;]: i € S;} and [ =
min{w[k;]: i € S,} are, respectively, the minimum value and the maximum
return level reached for all states. The results are summarized in Table VI.
For each system scale considered, the distribution of number of trials over
v is given. The statistics over [/ are omitted, since they follow a reasonably
monotonic pattern: larger / corresponds to smaller v.

In the table, || - || is the cardinality of a set. The total number of trials for
each system scale setting is 20,000. The first block gives the number of
system states and actions. The second block shows the number of trials in
which v = max{V;*[k,]: i € S,} falls into 10 uniform bins in its value range
[0, 1] at the end of each trial. The last block shows the number of trials in
which the local stochastic order optimal policies exist throughout the
computation toward v < 10~® and the mean and the standard deviation of
I = min{w][k,]: i € S;} at the end of each trial. For the left four data
columns, the reward function r and e are randomly selected from integers
in [0, 10]; while for the two rightmost data columns, they are selected in
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TABLE VI
Computational Results for the Existence of Complete Stochastic Order Optimal Policies

(1Sl 2 3 2 3 2 3
1151 2 3 2 3 2 3
1A 4 4 6 6 4 4
Illv € (0.9, 1.0l 14,183 18,687 15882 18,308 15,356 18,292
v € (08,091 1,809 682 1,749 969 1,557 803
v € (0.7,0.8]} 1,383 320 1197 439 1138 422
l{v € (0.6,0.71}l 934 131 510 148 719 191
Ii{v € (0.5,0.6]} 361 40 109 28 300 62
Illv € (0.4,05] 107 12 25 8 55 25
v € (03,041 37 3 11 2 19 3
v € (0.2,0.3]}l 12 2 2 2 13 2
v e (0.1,0.21} 2 0 0 0 3 1
v € (0,0.11}] 1172 123 515 96 840 199
KN A%lk,]1 + D,v <1078 1170 123 515 96 839 199
mean[/] + std[/] 332 + 147 244 +43 411 + 192 312 + 80 3,194 + 1,521 2,536 + 619

the range [0, 100]. The transition probabilities of ¢ are normalized random
numbers in [0, 1].

A comparison of the data in the two leftmost columns with those in the
two rightmost columns shows that there is no big difference if the range of
rewards increases. This may be due to the fact that scaling the reward
functions by a constant does not change the optimization structure. All of
the data columns show that complete stochastic order optimal policies do
exist for a small percentage of the systems; or more precisely, there exist
sufficiently large local stochastic order optimal policies. The percentage
decreases with an increasing number of states and actions, as more
possible conflicts are introduced. With more states in the system, fewer
local stochastic order optimal policies exist for larger intervals. The larger
the return level range the optimal policies cover, the fewer the optimal
policies. However, it appears that once the optimal policies exist for some
finite level interval, they are also optimal for [0, + ). In other words, for
finite state space and action space, it appears that the countable intersec-
tion in the existence condition for complete stochastic order optimal
policies might be given as a finite intersection of the first several optimal
action sets, yet this reduction is unproved. Finally, it is worth pointing out
that the single point stochastic order optimization model and &-optimiza-
tion models are most practical and interesting for applications. The e-opti-
mization models naturally incorporate robustness requirements, and there
is a greater likelihood that a complete stochastic order optimal policy
exists.
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8. SUMMARY

This paper deals with countable state, countable action MDP endowed
with a distribution function optimality criterion for the positive first arrival
target total return. Based on the basic properties of the objective func-
tions, convex combination, and cut-and-paste properties of the optimal
policies, the optimality equations for the value functions and optimality
conditions are obtained. If the complete or the local stochastic order
optimal policies exist, there must be deterministic stationary optimal
policies. If the single point stochastic order optimal policies exist, there
must be deterministic nonstationary policies. These results are applied to
systems with finite state space and action space. It is shown that the single
point stochastic order optimal policies must exist. An algorithm is devel-
oped to compute the value functions and the optimal action sets, from
which all optimal policies can be constructed. Numerical results are given,
and they indicate possible directions of further research on the optimality
constraints on system parameters.

ACKNOWLEDGMENTS

This work was supported in part by the Chinese National Natural Science Foundation and
Tsinghua University Fundamental Research Foundation. We thank anonymous referees,
Arthur Quaid, Lisa Saksida, and Stewart Moorehead for their very valuable comments and
suggestions. The first author also thanks her current institutions, the Robotics Institute and
the Center for the Neural Basis of Cognition, Carnegie Mellon University, for full support in
finishing the revision of this paper.

REFERENCES

1. D. J. White, Mean, Variance and probabilistic criteria in finite Markov decision pro-
cesses: A review, J. Optim. Theory Appl. 56 (1988), 1-29.

2. R. A. Howard and J. E. Matheson, Risk-sensitive Markov decision processes, Manage-
ment Sci. 8 (1972), 356—369.

3. C. Derman and E. Ignall, On the stochastic ordering of Markov chains, Oper. Res. 23
(1975), 574-576.

4. S. M. Ross, “Stochastic Processes,” Wiley, New York, 1983.

5. D. Stoyan, “Comparison Methods for Queues and Stochastic Models,” Wiley, New York,
1983.

6. Kun-Jen Chung and Matthew J. Sobel, Discounted MDPs distribution functions and
exponential utility maximization, SIAM J. Control Optim. 25 (1987), 49-62.

7. Yuanlie Lin, R. J. Tomkins and Chunglie Wang, Optimal models for the first arrival time
distribution function in continuous time—a special case, Acta Math. Appl. Sinica 10
(1994), 194-212.



10.

11.
12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

DISTRIBUTION FUNCTION OPTIMIZATION 223

. Wangi Zhang, Qiyuan Jiang, and Yuanlie Lin, Reliability-constrained Markov decision

programming and penalty factor method, J. Tsinghua Univ. 23 (1983), 61-71.

. Yuanlie Lin and Qiyuan Jiang, Three problems of applying Markov decision program-

ming to the optimal regulation of hydropower station reservoirs, in ‘“China—Japan
Symposium on Statistics,” Beijing, China, 1984, pp. 143-147.

M. Bauakiz and Y. Kiber, Target-level criterion in Markov decision processes, J. Optim.
Appl. 86 (1995), 1-15.

J. A. Filar, Percentiles and Markov decision processes, Oper. Res. Lett. 2 (1983), 13-15.
J. A. Filar, D. Krass, and K. W. Ross, Percentile performance criteria for limiting average
Markov decision processes, IEEE Trans. Automat. Control 40 (1995), 2—-9.

D. J. White, Minimizing a threshold probability in discounted Markov decision processes,
J. Math. Anal. Appl. 173 (1993), 634-646.

J. Grandell, “Aspects of Risk Theory,” Springer-Verlag, Berlin /New York, 1991.
Jianxing Lin, “A Study of Models for Markov Decision Programming in Discrete Time,”
Master’s thesis, Department of Applied Mathematics, Tsinghua Univ., Beijing, 1987.
Yuanlie Lin, R. J. Tomkins, and Chunglie Wang, Optimal models for the first arrival time
distribution function in continuous time, Proc. APORS’91 14 (1991), 292-299.

Yuanlie Lin and Jianxing Lin, Models for the first arrival time distribution function
optimization and risk minimization, J. Tsinghua Univ. 36 (1995), 53-59.

Harold J. Kushner and G. Dupuis, “Numerical Methods for Stochastic Control Problems
in Continuous Time,” Springer-Verlag, New York, 1992.

Yuanlie Lin, Continuous time first arrival target models. I. Discounted moment optimal
models, ACTA Math. Appl. Sinica 14 (1991), 116-124.

Yuanlie Lin, Optimal models for the first arrival target in continuous time. Il. L optimal
problems, J. Tsinghua Univ. 33 (1993), 1-9.

Yuanlie Lin, Xingxing Yu, and Jianxing Lin, Models for first arrival target distribution
function optimization and risk minimization in discrete time, in “Operations Research
and Its Applications, First International Symposium, ISORA’95, Beijing, August 1995
Proceedings,” pp. 368—375.

Xingxing Yu, “Research on Joint Delay-Filter Identification and Reinforcement Learn-
ing Control Models,” Master’s thesis, Department of Automation, Tsinghua Univ.,
Beijing, 1996.

David Blackwell, Discrete dynamic programming, Ann. Statist. 33 (1962), 719-726.



	1. INTRODUCTION
	2. MODEL DESCRIPTION
	3. BASIC PROPERTIES OF THE OBJECTIVE FUNCTIONS
	4. CONVEX COMBINATION AND CUT-AND-PASTE PROPERTIES OF THE OPTIMAL POLICIES
	5. THE VALUE FUNCTIONS AND THE OPTIMALITY CONDITIONS
	6. OPTIMIZATION FOR FINITE STATE SPACE AND ACTION SPACE
	FIG. 1.
	FIG. 2.

	7. OPTIMALITY CONSTRAINTS ON SYSTEM PARAMETERS AND NUMERICAL EXAMPLES
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	FIG. 3.
	TABLE V
	TABLE VI

	8. SUMMARY
	REFERENCES

