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Abstract

Existing models that integrate emotion and cognition generally do not fully specify why cognition needs emotion and conversely why
emotion needs cognition. In this paper, we present a unified computational model that combines an abstract cognitive theory of behavior
control (PEACTIDM) and a detailed theory of emotion (based on an appraisal theory), integrated in a theory of cognitive architecture
(Soar). The theory of cognitive control specifies a set of required computational functions and their abstract inputs and outputs, while the
appraisal theory specifies in more detail the nature of these inputs and outputs and an ontology for their representation. We argue that
there is a surprising functional symbiosis between these two independently motivated theories that leads to a deeper theoretical integra-
tion than has been previously obtained in other computational treatments of cognition and emotion. We use an implemented model in
Soar to test the feasibility of the resulting integrated theory, and explore its implications and predictive power in several task domains.
� 2008 Published by Elsevier B.V.
1. Introduction

Research on the integration of emotion and cognition
has existed for many years (Schorr, 2001). This research
has made great strides in establishing that emotion and
cognition are, in fact, intimately connected, and several
computational models have emerged that embody these
ideas (Gratch & Marsella, 2004; Hudlicka, 2004; Neal Reil-
ly, 1996; Ortony, Clore, & Collins, 1988). However, the
integrations achieved to date are to some extent incom-
plete. On the one hand, the claim that cognition is a neces-
sary antecedent to at emotion is well established, and
specific cognitive mechanisms that support emotion have
even been established (Smith & Kirby, 2001). However,
the computational realizations of this integration have lar-
gely been pragmatic. Thus, if an emotion theory claims that
some cognitive step must take place, such as determining
whether a stimulus is relevant to the current goal, then a
subsystem is implemented that makes it take place, with lit-
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tle consideration of it overall role in cognition and why it
must take place. That is, the link between core cognitive
functions and emotion has yet to be fully explored.

Our approach is to start with a theory of cognitive con-
trol called PEACTIDM (Newell, 1990; pronounced PEE-
ACK-TEH-DIM) and show how a set of emotion theories
called appraisal theories naturally fills in missing pieces in
PEACTIDM, while PEACTIDM provides the computa-
tional structures needed to support appraisal theories.
PEACTIDM is a set of abstract functional operations that
all agents must perform in order to generate behavior (the
acronym denotes these operators, described in detail below:
Perceive, Encode, Attend, Comprehend, Tasking, Intend,
Decode, and Motor). While PEACTIDM describes the
abstract operations, it does not specify the source and types
of data that these operations manipulate. We claim that
appraisal theories (Roseman & Smith, 2001) provide
exactly the required data. Conversely, PEACTIDM pro-
vides the functional operations missing from appraisal the-
ories. An important consequence of this integration is that
appraisals can be generated incrementally, leading to a
time course of emotions. This integration is performed
tional unification of cognitive behavior and emotion, Cognitive
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within the Soar cognitive architecture (Laird, 2008), but
could equally apply to similar cognitive architectures such
as ACT-R (Anderson, 2007). We furthermore show that
the integration provides a natural basis for understanding
the role of mood and feelings.

The main purpose of this paper is to explore the feasibil-
ity and potential value of this integration. Since there are
no existing integrations of this kind, a direct comparison
to alternative approaches is impossible. Instead, our evalu-
ation focuses on whether the integrated model produces
behavior that is qualitatively consistent with PEACTIDM
and appraisal theory. We will also address Picard’s (1997)
list of properties that an emotional system should have
(Section 5).

The remainder of this paper is organized as follows: in
Section 2, we provide background on cognitive and emo-
tion theories, with a focus on PEACTIDM, Soar and
Scherer’s (2001) appraisal theory. In Section 3, we describe
the unification of these in the context of a model of a sim-
ple, short task. In Section 4, we describe a slightly more
complex model of an extended synthetic task, and in Sec-
tion 5, we present an evaluation of that model. Section 6
describes related work, Section 7 describes future work,
and Section 8 concludes.

2. Background

In this section, we describe PEACTIDM, a theory of
cognitive control, and present background on cognitive
theories, particularly Soar, in terms of PEACTIDM. We
then present background on emotion theories, and make
the connection between PEACTIDM and appraisal theo-
ries as complementary pieces of the cognition/emotion
integration puzzle.

2.1. Cognitive systems

2.1.1. PEACTIDM: an abstract computational theory of
cognitive control

PEACTIDM is a theory of cognitive control where cog-
nition is decomposed into a set of abstract functional oper-

ations (Newell, 1990). PEACTIDM stands for the set of
eight abstract functional operations hypothesized as the
building blocks of immediate behavior: Perceive, Encode,
Attend, Comprehend, Tasking, Intend, Decode, and
Motor. These functions are abstract because although
many of them may often be primitive cognitive acts, they
can require additional processing, whose details are not
specified by Newell’s theory. PEACTIDM, as Newell
described it, was restricted to immediate behavior – tasks
with short timescales where interaction with the environ-
ment dominates behavior.

We will describe PEACTIDM via illustration with a
simple immediate choice response task adapted from a task
described by Newell. (As we demonstrate shortly, even a
simple example like this can have an emotional compo-
nent.) In the task, a subject is faced with two lights and
Please cite this article in press as: Marinier, R. P. et al., A computa
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two buttons. The lights are both within the subject’s fovea.
The subject’s task is to focus on a neutral point between the
lights and wait for a light to come on. When a light comes
on, the subject must press the button corresponding to that
light. The subject gets feedback that the correct button was
pressed by the light turning off in response to the press. The
subject’s reaction time is the time it takes to turn off the
light.

In PEACTIDM, Perceive is the reception of raw sensory
inputs. In this case, the subject perceives one of the lights
turning on. Encode is the transformation of that raw sen-
sory information into features that can be processed by
the rest of cognition. In this example, a representation is
created that indicates one light has come on. Attend is
the act of attending to a stimulus element. In this case, it
is not an overt eye movement but is some type of covert
attention that must select the lit light (even though the light
is already foveated). Comprehend is the act of transforming
a stimulus into a task-specific representation (if necessary)
and assimilating it into the agent’s current understanding
of the situation, such as classification or identification. In
our example, the subject verifies that one of the two lights
has come on (that is, his attention was not drawn by some
other stimulus). Tasking is the act of setting the task (i.e.,
the goal) in the internal cognitive state. In our example,
Tasking takes place in an earlier cycle before the task
begins – the subject is already poised, looking at the lights
with a finger ready to press a button and knows which but-
ton to press for which light. It is via Tasking that Compre-
hend knows what to expect and Intend knows what
operation to choose based on the input. Given the task
and the comprehension of the stimulus, Intend initiates a
response, in this case, pressing a button. Decode translates
the response from Intend into a series of motor actions.
Motor executes the action; in our example, the pressing
of the button.

Newell argued that the ordering of PEACTIDM func-
tions is determined largely by the data dependencies
between the functions (see Fig. 1). Perceive must occur
before Encode, which must occur before Comprehend,
which must occur before Intend, which must occur before
Decode, which must occur before Motor. In some simple
cases, the presence of a stimulus is all that is required for
the task, and thus the Encoding step may be skipped. Task-
ing is the most flexible. In the implementation presented
here, Tasking competes with Attend. That is, the agent
can either Attend (and thus complete the cycle as shown
in Fig. 1), or it can Task (in which case it immediately pre-
cedes to Perceive to restart the cycle). An alternative
approach has it compete with Intend (see Marinier, 2008).

2.1.2. Approaches to cognitive modeling

Although PEACTIDM describes a set of abstract oper-
ations, it does not describe which mechanisms realize these
operations and different approaches to cognitive modeling
suggest different mechanisms. The cognitive architecture

approach we pursue here decomposes cognition into more
tional unification of cognitive behavior and emotion, Cognitive
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primitive computational components that are the building
blocks for functional capabilities. The interactions among
these components give rise to temporal dynamics within
the system. A typical cognitive architecture consists of
memories (both long-term and short-term) with different
performance characteristics. For example, memories can
differ what type of knowledge is stored/learned, how
knowledge is represented in the memory, how it is learned,
and how it is retrieved. There can also be processing com-
ponents that combine knowledge, such as to select between
alternative interpretations or intentions. Most cognitive
architectures also have perceptual and motor systems.
Thus, a cognitive architecture provides task-independent
structure and subsystems that is shared across all tasks,
while using task-dependent knowledge to specialize behav-
ior for a given task. Cognitive architectures are essentially
computational systems for acquiring, encoding and using
knowledge.

A cognitive architecture implements PEACTIDM by
implementing the abstract operations via a combination
of its subsystems and knowledge that directs the interac-
tions of those subsystems. We have chosen Soar to realize
PEACTIDM, although it should be possible to implement
it in other architectures such as ACT-R (Anderson, 2007),
EPIC (Kieras & Meyer, 1997), or Clarion (Sun, 2006) (see
Marinier (2008) for a description of how PEACTIDM
might be implemented in ACT-R).

2.1.3. Soar

Soar is a cognitive architecture that has been used both
for cognitive modeling and for developing real-world appli-
cation of knowledge-rich intelligent systems. Fig. 2 is an
abstract block diagram of Soar, which shows the major
Please cite this article in press as: Marinier, R. P. et al., A computa
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memories (rounded edges) and processing modules (square
edges). In the bottom middle is Soar’s short-term memory
(often called its working memory). The short-term memory
holds the agent’s assessment of the current situation, derived
from perception (lower middle) and via retrieval of knowl-
edge from its long-term memories. It has three long-term
memories: procedural (production rules), semantic, and epi-
sodic, as well as associative learning mechanisms. In this
work, the semantic and episodic memories are not used,
but we will return to them in our discussion of future work.
The appraisal detector will be discussed in Section 3.4.

Soar avoids the use of syntax-based conflict resolution
mechanisms of traditional rule-based systems by firing all
matched rules in parallel and focusing deliberation on the
selection and application of operators. Proposed operators
are explicitly represented in working memory, and deliber-
ation is possible through rules that evaluate and compare
the proposed operators. Soar follows a decision cycle
(Fig. 3) which begins with an Input phase in which the
agent gets input from the environment. This is followed
by the Propose phase in which rules fire to elaborate
knowledge onto the state, and propose and compare oper-
ators. Next, based on the structures created by those rules,
Soar selects an operator in the Decide phase and creates a
structure in short-term memory representing the chosen
operator. This choice may be determined by the compari-
son knowledge, or it may be random. Once an operator
has been selected, rules with knowledge about how to apply
that operator can fire. Some of these rules may generate
output commands. Finally, Output is processed (e.g., the
world is updated in response to an action).
tional unification of cognitive behavior and emotion, Cognitive
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2.1.4. Implementing PEACTIDM in Soar

In this section, we walk through the simple immediate
choice response task presented earlier (Section 2.1.1) and
describe how it is possible to map PEACTIDM onto Soar.
This implementation closely following Newell’s (1990)
description.

Recall the task situation: the agent is faced with two
lights and two buttons; the task is to press the button corre-
sponding to the light that comes on. Before the task even
begins, the agent does Tasking, which creates a structure
in short-term memory describing the goal, which includes
a prediction that a light is going to come on. Perceive is
the reception of raw sensory inputs; in Soar this means that
a structure describing which light comes on is created in
short-term memory. This structure causes Encoding rules
in procedural memory to match and generate domain-inde-
pendent augmentations are added (e.g., the light coming on
means the agent can make progress in the task). Rules in
Soar fire in parallel, so if there were multiple stimuli, an
encoded structure would be generated for each at the same
time. Attend is implemented as an operator; this is natural
since PEACTIDM only allows for one stimulus to be
Attended to at a time, and Soar only allows one operator
to be selected at a time. Thus, there will be one proposed
Attend operator for each stimulus; which one is selected is
influenced by the Encoded information. In this task, only
one Attend operator is proposed (since there is only one
stimulus). Comprehend is implemented as a set of operators;
exactly how many are required depends on the complexity
of the task and situation. In this task, there is only one
Comprehend operator, which verifies that the stimulus is
what was expected (as determined by Tasking earlier).
Intend is implemented as set of operators that work together
to select a response (in this task, to push the button) and
create a prediction of the outcome of that action (in this
task, that the light will turn off). In Soar, Decode is merely
sending the selected action to the output system, and Motor

is handled by the simulation of the environment.

2.1.5. What PEACTIDM and cognitive architectures

provide

PEACTIDM provides constraints on the structure of pro-
cessing that are more abstract than cognitive architectures
like Soar or ACT-R. While Soar and ACT-R specify process-
ing units, storage systems, data representations, and the tim-
ing of various mechanisms, they are only building blocks and
by themselves do not specify how behavior is organized to
produce immediate behavior. PEACTIDM specifies the
abstract functions and control that these components must
perform in order to produce intelligent immediate behavior.

Some of the key constraints that arise from the combi-
nation of PEACTIDM and cognitive architectures are:

� The set of computational primitives that behavior must
arise from (Cognitive architecture).
� The temporal dynamics of cognitive processing and

behavior (Cognitive architecture & PEACTIDM).
Please cite this article in press as: Marinier, R. P. et al., A computa
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� The existence of core knowledge and structures that
must be reused on all tasks (Cognitive architecture &
PEACTIDM).

The principle theoretical gain in positing and appealing
to a level of analysis at the abstract functional operator
level is that it identifies common computational functions
across a wide range of tasks. It thus provides a level of
description at which a range of regularities may be
expressed concerning the nature of these functions. We
now exploit this level of description by showing how the
inputs and outputs that these operators require implies that
they must in fact constitute an affective system of a kind
assumed in appraisal theories of emotion.

2.2. Emotion modeling

2.2.1. What can emotion provide?

PEACTIDM and cognitive architectures describe pro-
cesses and constraints on representation and the timescale
of those processes, but they do not describe the specific
knowledge structures that are actually used to produce
behavior – it is up to the modeler to describe those, and
the space of possibilities is large. Consider PEACTIDM:
What structures does Encode generate? Given multiple
stimuli, what information does Attend use to choose which
to focus on? What information does Comprehend gener-
ate? What information does Intend use to generate a
response? We propose that much of the information
required by PEACTIDM is generated by the same pro-
cesses that generate emotion, and that these processes
are, in fact, the PEACTIDM operations themselves. The
abstract functions of PEACTIDM need information about
relevance, goals, expectations, and so on, and compute
them to carry out their functions. The results of these com-
putations, then, cause an emotional response.

2.2.2. Introduction to appraisal theories
The hypothesis that there is a relationship between the

way someone interprets a situation (along certain dimen-
sions, such as Discrepancy, Outcome Probability, and Cau-
sal Agency) and the resulting emotional response is a
defining characteristic of appraisal theories. Appraisal theo-
ries argue that emotions result from the evaluation of the
relationship between goals and situations along specific
dimensions (see Roseman & Smith, 2001 for an overview).
Appraisal theories are also discussed in Parkinson (this
issue), Marsella and Gratch (this issue), and Reisenzein (this
issue). For purpose of understanding the functional role of
emotion in cognitive architectures, appraisal theories are
appealing because they are naturally described at the cogni-
tive level, as opposed to the neurological or sociological lev-
els. Smith and Lazarus (1990) argued that, in general,
emotions allow for a decoupling between stimulus and
response, which is required to allow organisms to adapt
to a broader range of situations. This decoupling, then,
meant that more complex cognition was required to fill in
tional unification of cognitive behavior and emotion, Cognitive
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the gap. In other words, complex cognition goes hand-in-
hand with complex emotion. Thus, it has been claimed that
one of the primary functions of more complex cognition is
to support appraisal generation (Smith & Lazarus, 1990).

Appraisal theories fit naturally into our immediate
choice response task. When the subject presses the button,
he Encodes the state of the light and Attends to it. In the
Comprehend stage, he verifies that the light’s state matches
his prediction. Suppose that after the first several trials, the
experimenter disables the buttons so that the light stays
turned on even when the correct button is pressed. When
the subject Intends pressing the button, he still creates
the same prediction – that the light will turn off. When
the subject presses the button, though, the light does not
turn off. Thus, when the subject gets to the Comprehend
step, he will detect a mismatch between the actual state
and the expected state.

This mismatch is called Discrepancy from Expectation,
and the subject generates a structure to represent it. If the
subject has high confidence in an unmet prediction, it might
react differently from when the subject has low confidence in
an unmet prediction. Thus, when the subject generates the
prediction, an Outcome Probably is also generated. In this
case, since the subject had no reason to suspect that the light
would not turn off when the correct button was pushed, the
Outcome Probability was very high.

Since the Discrepancy from Expectation in this case con-
flicts with the Outcome Probability, we expect the subject
would experience surprise. The subject may not even
believe what just occurred, and try to press the button
again, going through the same steps. However, the second
time through, the Outcome Probability is probably lower,
and certainly after a few tries, the subject will realize that
the button is not functioning. Emotionally, the subject’s
reaction may vary based on many factors, such as who
he thinks is at fault (which we call the Causal Agent). If
he thinks he broke the button, he might feel shame. If he
thinks he is being thwarted by the researcher, he might feel
anger (especially if there was supposed to be some reward
based on his performance).

Appraisal theories are complementary to the general
cognitive model we described in that they provide a
description of the data being processed by cognition. Inte-
gration with cognitive architecture can provide the mecha-
nisms and processes that lead to appraisals and which
utilize the results of appraisal (e.g., emotions, moods, and
feelings; see Sections 2.2.3 and 4.2).

2.2.3. Scherer’s appraisal theory

Just as we have chosen to implement our model in a spe-
cific cognitive architecture, Soar, we have also chosen a
specific appraisal theory to work with: that proposed by
Scherer (2001). We do not have a strong theoretical com-
mitment to Scherer model, and we have chosen it largely
because of the extensiveness of the theory. Most appraisal
theories have six to eight appraisal dimensions, while
Scherer’s theory has sixteen appraisal dimensions. Thus,
Please cite this article in press as: Marinier, R. P. et al., A computa
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in the long run, if we can model Scherer’s theory, there is
less chance of us missing some important dimension than
if we started with a simpler, possibly less complete theory.

Scherer’s 16 appraisal dimensions are shown in Table 1.
These dimensions are divided into four groups: relevance,
implication, coping potential and normative significance.
The columns are modal emotions – typical labels assigned
to regions of appraisal space close to the sets of values
shown.

Scherer’s model differs from many appraisal theories in
that it assumes a continuous space of emotion as opposed
to categorical emotions. Like all appraisal theories, Scherer
provides a mapping from appraisal values to emotion
labels, but he describes these labels as modal emotions –
that is, common parts of the emotion space. Given that
the majority of existing computational models are categor-
ical (Gratch & Marsella, 2004; Hudlicka, 2004; Neal Reilly,
1996), exploring a continuous model may help clarify the
benefits and challenges of such a model. Furthermore,
while our theory is continuous, it would be trivial to add
categorical labels to regions if desired. Indeed, we intro-
duce a labeling function later that does this (although we
use it purely for analysis; see Sections 3.4 and 5.1.1).

Another way in which Scherer’s theory differs from most
is that he proposes that appraisals are not generated simul-
taneously. Rather, he claims that appraisals are generated
in the order of the groupings given above for efficiency rea-
sons. For example, there is no sense in wasting resources on
computing the implications of a stimulus if the stimulus is
irrelevant. We will return to this point after we have
described our specific model.

Scherer also proposes a process model describing how, at
an abstract level, the appraisals are generated and how they
influence other cognitive and physiological systems, but it
does not provide details of all the data needed to compute
the appraisals, nor the details of those computations. Our
computational model describes the details. Since the compu-
tational details include new constraints on how the model as
a whole works, our model differs in some ways from Scherer’s
theory. This arises in part because of the need to develop a
computational model of generation, and also because of
the more limited scope of our model. Scherer’s theory pays
some attention to the physiological and neurological aspects
of emotion, but like most appraisal theories, does not include
detailed mappings from the theory to specific behavioral data
or brain structures. Our model does not include a physiolog-
ical or neurological model, and does not yet attempt to mode
indirect influences on cognition or action tendencies. While
these are excellent candidates for future work, our primary
focus here is on the generation of appraisals in the context
of PEACTIDM, and how appraisals influence behavior;
thus, a symbolic cognitive approach is most appropriate.

3. Theory and implementation of integration

The main theoretical proposal is that cognitive and
behavioral control, as characterized by PEACTIDM,
tional unification of cognitive behavior and emotion, Cognitive



Table 1
A mapping from appraisal dimensions to modal emotions with dimensions grouped by function (adapted from Scherer, 2001)

Enjoyment/
happiness

Elation/
joy

Displeasure/
disgust

Contempt/
scorn

Sadness/
dejection

Despair Anxiety/
worry

Relevance

Novelty
Suddenness Low High/med Low High Low
Unfamiliar High High Very high
Unpredict Medium High High High
Intrinsic Pleasantness High Very low
Goal relevance Medium High Low Low High High Medium

Implication

Cause: Agent Other Other/
nature

Other/nature

Cause: Motive Intent Chance/
intent

Intent chance/neg chance/neg

Outcome probability Very high Very high Very high High Very high Very high Medium
Discrepancy from expectation Low High
Conducive High Very high Low Low Low
Urgency Very low Low Medium Low Low High Medium

Coping potential

Control High Very low Very low
Power Low Very low Very low Low
Adjustment High Medium High Medium Very low Medium

Normative significance

Internal standards
compatibility

Very low

External standards
compatibility

Very low

Fear Irritation/
cold ang

Rage/
hot anger

Boredom/
indiff

Shame Guilt Pride

Relevance

Novelty
Suddenness High Low High Very low Low
Unfamiliar High High Low
Unpredict High Medium High Very low
Intrinsic Pleasantness Low
Goal relevance High Medium High Low High High High

Implication

Cause: Agent Other/natural Other Self Self Self
Cause: Motive Intent/neg Intent Intent/neg Intent Intent
Outcome probability High Very high Very high Very high Very high Very high Very high
Discrepancy from expectation High High Low
Conducive Low Low Low High High
Urgency Very high Medium High Low High Medium Low

Coping potential

Control High High Medium
Power Very low Medium High Medium
Adjustment Low High High High Medium Medium High

Normative significance

Internal standards
compatibility

Very low Very low Very high

External standards
compatibility

Low Low Very low High

Those dimensions in italics are not implemented in our current model. Open cells mean all values allowed. Abbreviations: Unfamiliar = unfamiliarity,
unpredict = unpredictable, conducive = conduciveness, med=medium, intent = intentional, neg = negligence, ang = anger, indiff = indifference.
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requires appraisal information, and that this appraisal
information is computed directly by the PEACTIDM oper-
ations themselves. The generation of appraisals, and their
Please cite this article in press as: Marinier, R. P. et al., A computa
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accompanying emotional responses, then, is a byproduct
of the system’s normal operation. In this section, we pro-
vide the details of the integration of PEACTIDM and
tional unification of cognitive behavior and emotion, Cognitive
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appraisal theory, building on Scherer’s (2001) theory as
described above (Table 1), though it should be possible
to apply other comprehensive appraisal theories in a simi-
lar way.

In this section and Section 4, we describe aspects of our
theory using examples. In this section, we continue to use
the simple choice response task described earlier to give a
detailed account of how this integration is realized. Thus,
we address how appraisals and emotion are generated
and over what time course, how they are represented,
how emotion intensity is calculated, and the influence of
expectations. Section 4 demonstrates how the model works
in a more complex, extended task that we will use to dem-
onstrate additional appraisals and introduce mood, feeling
and their behavioral influences.

The simple choice response task follows the steps out-
lined in Table 2. This version has been slightly extended
past our previous description to show what happens imme-
diately following the button push.

To summarize this extended version of the task, the light
comes on, and the agent Perceives, Encodes and Attends to
the light, and Comprehend verifies that this is what is
expected. It then Intends to push the corresponding button.
Intend is implemented as a set of operators in Soar that
work together to both generate the push button command
and create a prediction (that the light will go off). After this
command is decoded and physically executed, the light
turns off. This change is Perceived, Encoded and Attended,
followed by Comprehension. Finally, the agent marks the
task complete.

In the process of performing these PEACTIDM steps
for this task, appraisal values are generated, which produce
an emotional reaction. In this task, only a subset of the
appraisals are relevant, namely Suddenness, Goal Rele-
vance, Conduciveness, Outcome Probability, and Discrep-
ancy from Expectation. Fig. 4 shows the relationship
between PEACTIDM and appraisal generation and which
appraisal information influences which steps in the PEAC-
TIDM process.

Perceive and Encode generate relevance appraisals,
which are used by Attend. Comprehend generates assess-
ment appraisals which are used by Intend. Intend generates
Table 2
PEACTIDM steps to simple the simple choice reaction task

PEACTIDM
Processing

Notes

Light on
Perceive
Encode + Attend
Comprehend Verifies prediction
Intend (to push button) Create Prediction Generate push

button command
Decode + Motor Light off
Perceive
Encode + Attend
Comprehend Verifies prediction
Tasking (to mark task complete)

Please cite this article in press as: Marinier, R. P. et al., A computa
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the Outcome Probability appraisal, which is used by Com-
prehend in the next cycle. Tasking (not shown) is influ-
enced by the current emotional state (not shown), which
is determined by the appraisals. Critically, our claim is that
the PEACTIDM steps require this appraisal information in
order to perform their functions, and thus it must be gen-
erated by earlier steps.

3.1. Appraisal values

The appraisals differ not only in how they are generated,
but also in the types and ranges of values they can have
with some appraisal values being numeric, while others
are categorical. Table 3 shows the ranges of values we have
adopted for the appraisals in our system.

For the numeric dimensions, most existing computa-
tional models use the range [0, 1] (e.g., Gratch & Marsella,
2004). The implication is that the 0 end of the range is less
intense than the 1 end of the range. For some dimensions,
this is true: a stimulus with Suddenness 1 would be consid-
ered more sudden that a stimulus with Suddenness 0. For
other dimensions, though, being at the ‘‘low” end could
be just as intense as being at the ‘‘high” end. For example,
if I pass an exam, I will appraise this as high Conduciveness
and have a strong positive feeling. However, if I fail the
Table 3
Appraisal dimensions with ranges

Suddenness [0, 1] Unpredictability [0, 1]
Goal relevance [0, 1] Discrepancy from expectation [0, 1]
Intrinsic pleasantness [�1, 1] Outcome probability [0, 1]
Conduciveness [�1, 1] Causal agent [self, other, nature]
Control [�1, 1] Causal motive

[intentional, negligence, chance]Power [�1, 1]

tional unification of cognitive behavior and emotion, Cognitive
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exam, I will appraise this as very low Conduciveness, (i.e.,
highly unconducive) and will experience a strong negative
feeling. Thus, for these dimensions we use the range [�1,
1] – that is, values near zero (e.g., not very conducive or
very unconducive) would have a low impact on feeling,
but values near the extremes (e.g., very conducive or very
unconducive) would have high impact on feeling.

3.2. Computing the active appraisal frame

In the following sections, we trace the generation of
appraisals in our example. To make the calculations easier
to follow, we will use extreme values, such as 1.0, for the
appraisals, even though less extreme values would be more
realistic.

In our example, before the task began (perhaps when
waiting for the light to come on), the agent engaged in
Tasking which did two things: it created a structure repre-
senting the task and a prediction structure that a light will
come on. This prediction structure has an associated Out-
come Probability appraisal value, which we assume is the
extreme value, 1.0. When the light comes on, Perceive gen-
erates a value for the Suddenness appraisal, with value 1.0.
Then, during Encoding, a structure is created with the fol-
lowing information: which light came on (which is domain-
dependent), and whether this stimulus is on the path to
completing the task. The fact that a light came on leads
to a Goal Relevance appraisal value of 1.0.

The appraisals are stored in an appraisal frame, which is
the set of appraisals that describe the current situation that
the agent is thinking about it (Gratch & Marsella, 2004).
Before an agent Attends to a stimulus, there may be several
appraisal frames that have been started – one for each stim-
ulus the agent perceives. We call these the pre-attentive
appraisal frames. What distinguishes our use of appraisal
frames from Gratch and Marsella (2004) is that we use a
single active frame to limit which appraisals are generated,
whereas they have multiple complete frames; computation-
ally, this makes our approach more efficient.

Attend then uses the available appraisal frames to select
the stimulus to attend to. For example, the stimulus that is
most Sudden may be preferred. (See the connection
between Encode and Attend in Fig. 4.) When a stimulus
is Attended, a flag marks the associated appraisal frame
as the active frame. Once a frame becomes active, several
other appraisals can occur. This is in line with our hypoth-
esis that Comprehension follows Attend, and that Compre-
hension generates the data necessary for further processing
(e.g., Intending an action; see the connection between
Attend and Comprehend and Tasking in Fig. 4). Specifi-
cally, the calculation that the stimulus is on the path to
the goal leads to a Conduciveness value of 1.0.

3.3. Sequences and time courses of appraisals

Now that we have described how appraisals are gener-
ated, we will discuss the implications of that process on
Please cite this article in press as: Marinier, R. P. et al., A computa
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the sequencing and time course of appraisals. Scherer
(2001) proposes that the appraisals are generated sequen-
tially because the outcomes of some appraisals obviate
the need for others. For example, if none of the relevance
appraisals indicates that a stimulus is interesting, then there
is no need to continue processing the stimulus. Our model
also imposes sequential constraints (see Fig. 4), but for two
reasons, one of which is related to Scherer’s. Attend will
not choose a stimulus unless one of the relevance dimen-
sions indicates that it is interesting, much like Scherer’s the-
ory describes. However, additional ordering constraints
arise from the flow of data in the model. For example, since
Discrepancy from Expectation arises from the Comprehen-
sion function, it occurs after the Conduciveness appraisal
(which is activated upon Attending). Similarly, the Out-
come Probability appraisal is generated in the Intend step,
which comes after Comprehension. Thus, while Scherer’s
argument for sequential appraisal generation centers on
efficiency and the wastefulness of generating irrelevant
appraisals, our data-driven model extends that to also
impose an ordering based on data-driven constraints: the
appraisals cannot be generated earlier (regardless of the
efficiency). The idea of appraisals being data-driven has
been mentioned elsewhere (see Roseman & Smith, 2001,
pp. 12–13 for a brief overview of this point), but the idea
has been used to argue that appraisal ordering is not fixed
at all. Data-driven processing combined with PEACTIDM
implies at least a partial ordering.

A corollary to this is that some appraisals take longer to
generate than others. In the implementation, all appraisals
are generated by rules that test features of the agent’s inter-
nal state, and thus fire as soon as possible. However, the
amount of time it takes to generate the required features
varies. As just stated, the Discrepancy from Expectation
appraisal rule cannot fire until the required information
has been generated by Comprehend (which in turn requires
that the Attend operator has been executed). In general, a
more complex model might require an arbitrary amount
of processing to generate the information necessary so that
a Causal Agent appraisal rule can fire, which is consistent
with the inference vs. appraisal distinction made by Marsel-
la and Gratch (this issue). Thus, the model not only implies
partially ordered sequences of appraisals, but it also implies
varying time courses for the generation of those appraisals.

3.4. Determining the current emotion

Appraisal theories claim that appraisals cause emotion
(see Table 1). Given the theory we have described so far,
it may seem that appraisal alone is sufficient. However,
as we will see in Section 4, emotion has functional value
beyond appraisal, in that it represents situation knowledge
in a task-independent form that can be used to influence
control and hence behavior. Here we will simply describe
the emotion mechanism.

A mechanism called the Appraisal Detector (Smith &
Kirby, 2001) processes the active frame to determine the
tional unification of cognitive behavior and emotion, Cognitive
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current emotion. It is via this mechanism that the active
frame affects the rest of the system. Emotion theories dis-
agree as to how many emotions a human can have at once.
Our current model supports one active appraisal frame at a
time, and thus only one emotion (not to be confused with
mood or feeling, which are separate; these will be discussed
in Section 4). The pre-attentive appraisals generated for the
other stimuli do not influence the current emotion in our
model.

In many systems (Ortony et al., 1988), the emotion is
reported as a label (such as anger, sadness, joy,. . .) with
an intensity. These categorical theories of emotion assume
that there are a small, fixed number of possible feelings that
vary only in intensity. In our model, like in Scherer’s (2001)
theory that inspires it, each unique appraisal frame corre-
sponds to a unique experience. Categorical, linguistic labels
can be generated by segmenting the space of appraisal
frames, and we do this for our own analytical purposes.
However, the current model does not use these labels,
and even if it did, at best such labels would be a model
of how an individual in a particular culture might label
the emotions. For example, in the current problem, since
Conduciveness and Goal Relevance are positive, and other
appraisals such as Causal Agent are not being considered
(which would lead to Pride), the agent’s current emotion
would correspond to joy. The actual representation is the
active appraisal frame: Suddenness = 1.0, Goal Rele-
vance = 1.0, Outcome Probability = 1.0, and
Conduciveness = 1.0.

3.5. Calculating intensity

In addition to determining an appraisal as a point in a
multi-dimensional space (or as a category), the system must
also determine the intensity. Intensity is important because
it summarizes the importance of the emotion, and thus indi-
cates to what degree it should influence behavior. Emotions
with low intensity are likely to be caused by less important
stimuli than emotions with high intensity. In this section, we
briefly present the intensity function; see Marinier and
Laird (2007) for details on the derivation of this function.

Overall our approach combines the numeric dimensions
of the active appraisal frame to form a single numeric
intensity value; since the categorical dimensions are non-
numeric, they do not participate in the intensity calcula-
tion. There are many ways to produce an intensity value
from a frame, and although there is little theory or empir-
ical evidence to guide us, we define three general criteria for
an intensity function:

(1) Limited range: intensity should map onto [0, 1]. This
is common to most existing theories.

(2) No dominant appraisal: no single appraisal value
should dominate the intensity function; each should
contribute to the result but no single value should
determine the result. This criterion eliminates a com-
monly used basis for combination: multiplication
Please cite this article in press as: Marinier, R. P. et al., A computa
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(e.g., Gratch & Marsella, 2004). One critical problem
with multiplication is that if any dimension has a zero
value, then the intensity will be zero, regardless of the
other values.

(3) Realization principle: expected stimuli should be less
intense than unexpected stimuli (Neal Reilly, 2006).
This is in contrast to Gratch and Marsella (2004)
where intensity is maximized when the likelihood is 1.

Our intensity function has two parts: a surprise factor

that takes into account how expected or unexpected a stim-
ulus is based on the Outcome Probability and Discrepancy
from Expectation dimensions, and an averaging part that
incorporates the rest of the numeric appraisal values. The
intensity equation is

I ¼ ½ð1�OPÞð1�DEÞ þ ðOP �DEÞ�

�
S þUPþ jIPj

2
þGRþ jCondj

2
þ jCrtlj

2
þ jP j

2

num dims

where OP is the Outcome Probability, DE is the Discrep-
ancy from Expectation, S is the Suddenness, UP is the
Unpredictability, IP is the Intrinsic Pleasantness, GR is
the Goal Relevance, Cond is the Conduciveness, Ctrl is
the Control, P is the Power, and num_dims is the number
of dimensions included in the average (7, if all dimensions
have values). In those cases where one or more values for
appraisals in the averaging part of the equation are missing
(as in our current simple choice reaction task example), the
average is taken over the values that are present. If either
Outcome Probability or Discrepancy from Expectation is
missing, then the present value is multiplied by the averag-
ing part (in this model, the Outcome Probability is always
present in an active appraisal frame since there is always a
prediction).

The intensity function is biased so that some classes of
emotions are inherently more (or less) intense than others.
For example, the emotions that Scherer’s theory would
label as Boredom/Indifference are composed of low values
for most dimensions combined with high outcome proba-
bility and low discrepancy, resulting in low intensity (see
Table 1 for Scherer’s mapping from appraisals to emo-
tions). On the other hand, Scherer’s Rage/Hot Anger emo-
tions are composed of mostly high values, with high
outcome probability and high discrepancy, resulting in
high intensity. This is congruent with many circumplex
models of emotion (Yik, Russell, & Feldman Barrett,
1999), which also propose different intensities for different
emotions, suggesting a bridge between circumplex models
and appraisal models.

3.6. Modeling the task

Returning to our example, the intensity of the joy follow-
ing the light coming on is Outcome Probability multiplied
by the average of Suddenness, Goal Relevance, and Condu-
civeness. Since these all have value 1, the intensity is 1. Fig. 5
tional unification of cognitive behavior and emotion, Cognitive
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Fig. 5. The task as split into PEACTIDM stages with the signed emotion
intensity at each point in time.
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Fig. 6. The revised task as split into PEACTIDM stages with the signed
emotion intensity at each point in time.
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shows the entire task in terms of the PEACTIDM stages
with the emotion intensity at each point in time.

Next, the agent verifies the prediction in the Comprehend
step. Recall that the prediction was created before the task
began, and it said that a light would come on. The predic-
tion was accurate, so a value of 0 is generated for Discrep-
ancy from Expectation. This causes the intensity of the
emotion to drop to 0 because the surprise factor of the
intensity is 0 (we might now call the emotion boredom).

Following Comprehend, the agent Intends to push the
button. As described earlier, this causes the architecture
to generate a prediction that the light will go off when
the button is pressed, and it generates the command to
push the button. The prediction replaces the previous pre-
diction (that the light would come on) and has a new Out-
come Probability associated with it (again, let’s assume it is
1). This is followed by Decode and Motor with the result
that the button is pushed and the light turns off. This
change is Perceived, Encoded and Attended with appraisals
generated as before, again resulting in a positive emotion
with an intensity of 1. Comprehend confirms the predic-
tion, causing the intensity to return to 0. Finally, Tasking
marks the task structure as complete.

3.7. The revised task

When the world behaves as expected, there is very little
to get excited about. Emotional reactions are often stron-
gest when unexpected things occur. To explore this, we
revised the task so that the light does not turn off when
the button is pushed. How does this change the appraisals?
The first part of the task (up to the pushing of the button)
is exactly the same so that the Suddenness and Goal Rele-
vance appraisals have values of 1, just like before. How-
ever, now when the button is pushed, nothing happens,
so that when the stimulus (the light) is Attended to, Condu-
civeness is �1 because the stimulus is not on the path to the
goal, as shown in Fig. 6. The intensity of the emotion is still
1, but the valence is negative (because Conduciveness is
negative). Our labeling function (Section 5.1.1) calls this
appraisal frame Displeasure. Comprehend determines that
the prediction was inaccurate, resulting in a Discrepancy
from Expectation value of 1. Thus, whereas before the
intensity returned to 0 at this point, it now stays at 1,
Please cite this article in press as: Marinier, R. P. et al., A computa
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and thus the negative emotion persists (see Fig. 6). We
can only speculate at what would happen next, since the
situation is presumably not covered by the task instruc-
tions; in our version, the agent still does Tasking and marks
the task as complete.

3.8. Discussion of the model

The emotional reaction of an agent to the task depends
on at least two factors: to what extent the things occur as
the agent has predicted them to, and what is at stake for
the agent. In Fig. 5, the agent has very brief reactions to
the stimulus (in Soar, on the order of 50 ms), which imme-
diately go away when the agent realizes that the results are
consistent with its expectations. This demonstrates how
incrementally generated appraisal information leads to
the emotion time courses. In Fig. 6, when the outcome is
unexpected, the agent’s reaction is prolonged. Thus, even
for a mundane task like pushing a button, emotional
responses are possible. In the example, the appraisal values
were extreme for demonstrative purposes, which would
reflect a situation in which the consequences of the agent’s
actions are extremely important – such as the World
Championship of button pushing, or if a large amount of
money is riding on the agent’s performance. One has only
to watch TV game shows where the only action is choosing
a box to open to see examples of extreme emotional
responses for mundane actions. To emulate mundane but-
ton pushing, lower appraisal values would be used, which
would result in little emotional reaction.

3.9. Summary

In this section, we demonstrated the integration of
PEACTIDM and appraisals in our implementation. This
included many details that go beyond PEACTIDM and
appraisal, including value ranges for appraisals, active
appraisal frames, and the calculation of intensity. An addi-
tional avenue of inquiry is the relationship between the
agent’s performance on this task and human data, and
the impact of Soar’s chunking mechanism. Those issues
are described in Marinier (2008).

The next section describes the model in the context of a
task that involves multiple actions over time. At the end of
tional unification of cognitive behavior and emotion, Cognitive
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that section will be a discussion of some of the implications
of the model which apply equally well to this simple model,
but which the reader may find easier to appreciate in the
more complex context. Hence, that discussion is delayed
until then.

4. A model in a more complex, extended task

In the previous section, we described the integration of
PEACTIDM and appraisal theory in Soar in the context
of a very simple task. In this section, we extend that model
to a more complex (but still fairly simple) extended task
that utilizes more appraisal dimensions. Unlike the previ-
ous task, this task may take an arbitrary number of PEAC-
TIDM ‘‘cycles” to complete. This raises new issues, such as
how previous emotions affect new emotions, and the role of
Tasking when the ongoing task may be viewed as different
subtasks. Addressing these issues will allow us to address
qualitative questions such as, does the model produce
coherent, useful behavior in the long term? Do the apprais-
als affect behavior and vice versa? Do appraisals have a
reasonable (if not human-matching) time course? These
and other questions will be addressed in the evaluation
(Section 5).

For an ongoing task, we have chosen a simple Pacman-
like domain called Eaters (Fig. 7a) that eliminates complex-
ities of real-world perception and motor actions, while sup-
porting tasks that although simple, allow for a range of
appraisals and emotions. Eaters is a 2-D grid world in which
the agent can move from square to square except where
there is a wall. The agent can sense the contents of the cells
immediately to its north, south, east and west. The agent’s
task is to move from its starting location to a specified goal
location. This may not always be possible, in which case an
Fig. 7. (a) A screenshot of eaters. The agent is the Pacman-like figure at locat
Encoded structures for each stimulus. The star shows the goal location.

Please cite this article in press as: Marinier, R. P. et al., A computa
Systems Research (2008), doi:10.1016/j.cogsys.2008.03.004
intelligent agent should choose to give up so it can move on
to other tasks. The task ends when the agent notices it has
achieved the goal or when it gives up.

In terms of PEACTIDM, the agent will need to Perceive
its surroundings, including information about what lies in
each direction (e.g., walls, open spaces), create structures
representing the encoded form of the input (e.g., some
direction is passable and whether moving in that direction
leads closer to the goal), Attend to one of the encoded
structures, Comprehend that structure in terms of its cur-
rent understanding of the situation (e.g., is the situation
what the agent predicted), Intend an action if possible
(e.g., if the Attended structure can be acted upon to get clo-
ser to the goal), and then perform the Intended action (via
Decode and Motor). Tasking will play a role when the
agent is stuck; for example, it may need to create a subtask
to circumvent a wall, or to give up.

In appraisal theory terms, each choice point (e.g., what
to Attend to, what to Intend, when to give up) will be
guided by emotional information. Thus, the steps preced-
ing these choice points must generate the appraisals that,
directly or indirectly, influence the choices to be made.

What follows are the details of how each PEACTIDM
function is implemented in this model, including how the
appraisals fit in.

4.1. PEACTIDM in the Eaters domain

This section describes how PEACTIDM as implemented
in Soar is used to perform the Eaters task. Some aspects of
these phases are domain-specific (e.g., the stimuli and
actions), but most of the core processing (Encode, Compre-
hend, Tasking) is general and taken directly from the pre-
vious model.
ion (3, 4), walls are black cells, and open spaces are light-colored cells. (b)

tional unification of cognitive behavior and emotion, Cognitive
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4.1.1. Perception and encoding

Perception and Encoding generate structures that lead
to relevance appraisals used by Attend to determine which
stimulus to process. We do not directly model the Perceive
function. The Eaters environment provides symbolic inputs
to the Soar agent. Each direction (north, south, east, and
west) is considered a stimulus; thus, a separate structure
is Encoded for each direction, which includes information
such as whether the direction is passable, whether it is on
the path to the goal or not, the distance to the goal, and
whether the agent is making progress. The distance to the
goal is an estimate based on Manhattan distance and
may be incorrect if there are walls between the agent and
the goal. If the agent is at a goal location, it will have a sep-
arate Encoded structure for the goal completion. The
Encoded structure is fairly general – any task in which
there is a path to the goal that can be blocked and where
there is an estimate of distance to the goal can be Encoded
in this way.

Fig. 7b shows an example that will be used throughout
the rest of this section. The goal is for the agent to reach
location (7, 4) (marked by the star) and the agent has
moved from the west. The agent will have four encoded
structures, one for each cardinal direction. The north,
south, and west structures will be marked as passable,
directly off the path (since those directions will increase
the distance to the goal), and at a distance of 4 from the
goal. The east structure will be marked as impassable but
directly on the path to the goal.

Relevance appraisals are generated directly from these
Encoded structures. The north, south, and east stimuli
have some Suddenness, whereas the west stimulus has no
Suddenness (since the agent just came from there). In any
environment, the agent will likely have some general expec-
tations about what things to expect, and our agent expects
there not to be many walls in the world. Thus, the north,
Fig. 8. (a) Pre-attentive appraisal frames for each encoded structure. (b) The
function adds to this frame. The agent decides to Ignore this stimulus.
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south and west stimuli have low Unpredictability, but the
east stimulus has a high Unpredictability. Our agent is also
averse to walls (since they only ever get in its way). Thus, it
finds them Intrinsically Unpleasant giving the east stimulus
a low Intrinsic Unpleasantness value. Finally, since the east
direction is on the path to the goal, it is highly Goal Rele-
vant, but the other stimuli are not (Fig. 8a). Note that, in
this model, only one goal or subgoal is active at a time,
and thus Goal Relevance is computed with respect to that
goal.

4.1.2. Attending

In general, the agent wants to make progress towards its
goal, so stimuli that are Goal Relevant should given prior-
ity. However, Sudden or Unpredictable stimuli may also
require attention, since these may be signals of danger or
opportunity that needs to be dealt with. This is essentially
an exploit versus explore tradeoff. Finally, stimuli that are
intrinsically pleasant or unpleasant (independent of the
current goal) may also deserve attention. In this model,
each stimulus is appraised along the Suddenness, Unpre-
dictability, Intrinsic Pleasantness, and Goal Relevance
dimensions, determining the appraisal frame (Fig. 4).

In this model, the selection of which stimulus is
Attended to is a weighted random choice, with weights
determined by the values of the appraisals just discussed.
Since unusual stimuli are more likely to be worthy of
Attention, as described above, appraisals with more
extreme values lead to larger weights; that is, more interest-
ing stimuli are more likely to be Attended to. Thus, the
appraisals provide a task-independent language for knowl-
edge that can influence control.

In our example, the north and south Attend proposals
have moderate weights, whereas the west Attend proposal
has a slightly lower weight (since its Suddenness is lower).
The east Attend proposal has a higher weight because it is
agent attends East, making that appraisal frame active. The Comprehend

tional unification of cognitive behavior and emotion, Cognitive
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on the path to the goal, leading to an appraisal of Goal
Relevance, and it has a wall, which is Intrinsically Unpleas-
ant. Thus, the agent is most likely to Attend east.

4.1.3. Comprehension

Next, the agent performs the Comprehend function,
which adds several additional appraisal values to the active
frame (Fig. 8b). The agency of the stimulus is determined
(in this model, ‘‘nature” is always the Causal Agent and
‘‘chance” is always the Causal Motive). The Conduciveness
is also determined – if the stimulus direction is passable and
on the path to the goal, it has high Conduciveness, whereas
if it is off the path or blocked it has low Conduciveness.
The Control and Power appraisals are also generated – if
a stimulus direction is passable, Control and Power are
rated high, whereas if the direction is impassable, Control
and Power are low. While this domain is very simple,
and thus the generation of these appraisal values is very
simple, a more complex domain would potentially require
arbitrary processing to determine values for any of these
appraisals. We will not consider such extended processing
here.

In our example, since the agent is Attending to the east
stimulus, which is impassable but on the path to the goal, it
will generate appraisals of low Conduciveness, low Power,
and low Control (since it cannot walk through walls). Cau-
sal Agency and Motive are ‘‘nature” and ‘‘chance”, as
noted above.

As in the previous model, the agent then verifies the
stimulus via comparison of the current stimulus to the cur-
rent prediction (as generated by the previous Intend) lead-
ing to the generation of the Discrepancy from Expectation
appraisal. If the stimulus is a match, then the Discrepancy
from Expectation appraisal is low; if there is not a match,
then the Discrepancy is high.

Unlike the previous model, once a stimulus has been
verified, the agent performs another Comprehend step that
determines if further processing is warranted. This gives the
agent a chance to ‘‘back out” if it determines that process-
ing should not proceed. That is, the agent answers the
question, can additional processing of this stimulus lead
to an action that helps me? The agent uses a heuristic called
dynamic difference reduction to make this choice. Difference
reduction (Newell, Shaw, & Simon, 1960) attempts to take
internal processing steps to reduce the difference between
the current state description and the goal state description.
Dynamic difference reduction (Agre, 1988) takes the steps
in the world to avoid the need for increasing amounts of
memory to track one’s imaginary progress. Thus, difference
reduction leads to plans whereas dynamic difference reduc-
tion leads to actions. In our model, if a stimulus can be
acted upon (i.e., it is associated with a passable direction)
and it does not lead directly away from the goal, then Com-
prehension is complete and the agent acts upon it (it does
the Intend function). Otherwise, the agent chooses a second
Comprehend operator, Ignore. Ignore marks the stimulus
as processed and allows control to return to Attend, which
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will choose another stimulus to process from the remaining
stimuli as above. This deactivates the appraisal frame for
the Ignored stimulus.

In our example, the agent is Attending east, which is a
wall. Comprehend will find a mismatch (since our simple
model almost always predicts a passable route to the goal).
This will trigger an appraisal of high Discrepancy from
Expectation, which is added to the current frame. Since
there is a wall, the agent cannot directly act upon the stim-
ulus, so it then Ignores it. In fact, the agent is trapped by its
goal in this case. As it Attends and Comprehends to each
stimulus, it will find that the remaining stimuli lead away
from the goal. Thus, Ignore will eliminate all of the remain-
ing stimuli.

4.1.4. Tasking

When the agent has no options left, it is forced to engage
in Tasking. This is an addition to the previous model which
did not engage in Tasking during the task itself (only
before the task began and at the very end). Generally
speaking, Tasking is about managing goals (e.g., creating
goals, giving up on goals, etc.). In this case, the agent cre-
ates a subtask to get around the blockage. In general, there
are at least two types of goals. One type is abstract – the
goal cannot be acted upon directly and must be broken
down into more concrete components (perhaps many
times) until it is in a form that can be directly acted upon.
For example, the goal ‘‘Go to Work” is very abstract, and
must be broken down to something that can be directly
executed, such as ‘‘take a step”. The other type is concrete
– the goal can be acted upon directly. This is the form of
goals in this model. When the agent temporarily retasks
itself for the purpose of making progress on its original
goal, we call this subtasking, and we call the new goal
structure a subtask.

The goal that the agent cannot make progress on is to go
to (7, 4). The reason that the agent is stuck on this goal is
that its control knowledge and task formulation are too
restrictive. Movement in any available direction will take
it further from the goal, which violates its dynamic differ-
ence heuristic. In order to move around the blockage, it
needs to temporarily get further away from the goal. Thus,
the agent needs to retask and create a goal that is less con-
straining, allowing it to get further from the main goal, but
without violating its constraints in the new goal. The agent
does this by defining the step it would ideally take – in this
case, it would ideally move east to x = 4. It sets this as its
new subtask. That is, there is no constraint in the y (north-
south) direction.

When an agent creates a subtask, it records information
that gives it some idea of whether it is making progress or
not. Specifically, it records the distance to the parent task
(goal) at that time. It also tracks the minimum distance it
has ever been to the goal upon entering a subtask. If the
current distance to the goal is less than the minimum dis-
tance to the goal, then the subtask is considered a ‘‘good”

subtask – that is, the agent knows that, even though it has
tional unification of cognitive behavior and emotion, Cognitive
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to retask, it is making progress towards the goal. If the dis-
tance to the goal is not reduced, then the subtask is consid-
ered a ‘‘bad” subtask – that is, the agent cannot tell if it is
actually making progress by retasking. The Encode func-
tion adds this good/bad subtask information to each
Encoded structure, and this information influences some
of the appraisals. In this model, the Conduciveness apprai-
sal is more positive in good subtasks.

As alluded to above, once the agent has this new sub-
task, the Encoded stimuli are regenerated (since there is a
different context for them now) and the agent can then
re-Attend to the stimuli to see if any are now suitable.
The agent can theoretically create an arbitrary number of
nested subtasks this way, but for the current task it only
needs one at a time (although it may create several in the
course of completing the goal).

In our example, this is the agent’s first subtask, so it
defaults to a good subtask. The agent might still Attend
to the east stimulus first and ignore it again, but when it
Attends to, for example, the north stimulus, it will find that
it is no longer directly off the path to the subtask. Instead it
is now a sideways move (since it neither gets it closer to nor
further away from x = 4). Thus, the agent determines
that this stimulus can be used for Intention processing
(Fig. 9a).

4.1.5. Intending

Once the agent has found a stimulus it can act upon, it
performs the Intend function, which is also implemented as
a Soar operator. As in the previous model, Intend proposes
moving in the direction of the stimulus. It also creates a
new prediction structure – namely that the next stimulus
direction will be passable and on the path to the goal
(Fig. 9b) in this model, the agent is always optimistic in this
Fig. 9. (a) The agent creates a subtask to get around the blockage. The stars
encoded structures to be created. The agent Attends north. (b) The agent Inte
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way). If the agent is currently one step away from the goal,
then it creates a goal achievement prediction. Along with
the prediction, the agent also generates an Outcome Prob-
ability appraisal. As before, the Outcome Probability is tied
to the prediction, and thus all appraisal frames in the situ-
ation that results from an Intend will inherit this same Out-
come Probability (Fig. 4).

In our example, Intend proposes moving north. The
Intend operator sends a command to the environment to
move north, and also creates a prediction. Since it is pursu-
ing a subtask, the agent is less confident of its predictions,
so it only rates the Outcome Probability of this prediction
as moderate.

4.1.6. Decode and motor

We do not directly model the Decode and Motor func-
tions. The model uses Soar’s standard method of commu-
nicating an action command to the simulated
environment, which then executes it, leading to a new input
state. For simplicity, in the model presented here, actions
never fail (e.g., if the agent Attends to a wall, it will Ignore
it instead of trying to move into it). However, more recent
work on learning (Marinier & Laird, 2008) does allow
action failures.

4.2. Emotion, mood, and feeling

In the previous model, we described how active apprai-
sal frames become emotions. That is still true in this model.
However, since the agent behaves over a long period of
time in this task, the question naturally arises, how do emo-
tions affect each other over time? In this section, we will
introduce mood and feeling. The functional aspects of
these will be discussed in Section 4.3.
show the possible locations that would solve the subtask. This causes new
nds moving north. It creates a prediction of the next stimulus it will see.
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Fig. 10. An emotion frame influences and combines with the mood frame
to produce the feeling frame, which is perceived by the agent.
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Recall that some existing computational models attempt
to address the issue of how an emotion affects a succeeding
one (see Section 6). Still, these models, and most theories,
do not make an explicit distinction between emotion, mood
and feelings; some only describe emotion (Hudlicka, 2004),
some only describe emotion and mood (Gratch & Marsella,
2004) and some describe emotion, but mood only vaguely
(Smith & Lazarus, 1990). One existing distinction made
between emotion and mood is in terms of timescale: emo-
tions are short-lived while moods tend to last longer
(Rosenberg, 1998). Some physiologically-oriented theories
of emotion (Damasio, 1994; Damasio, 2003) distinguish
between emotions and feelings: emotions have some impact
on physiology, and the agent perceives or feels these
changes, called the agent’s feelings. That is, feelings are
our perception of our emotions.

This distinction between emotion, mood and feeling is
not universally accepted; indeed, what processes and phe-
nomena are considered ‘‘emotional” is a subject of consid-
erable debate. In our model, the specific labels are less
important than the computational processes, structures
and connections that make up the model as a whole. For
example, Frijda, Kuipers, and ter Schure (1989) consider
action tendencies to be part of emotion, whereas in our
model we have action tendencies separate from emotion.
Nevertheless, since the architecture supports the generation
of action, and we have added the ability to generate emo-
tion, mood, and feeling, the mechanisms are in place to
allow an integration of these with action. Indeed, action
is partially influenced by feeling in the present model (see
Section 4.3). That these phenomena are inextricably bound
is not debated; how we choose label them is an expository
convenience.

In our model, we maintain a distinction between emotion
and feeling, and also introduce mood. Emotion is the cur-
rently-active appraisal frame. In our model, we use a simple
model of mood, where mood is a weighted average-like
aggregation over past emotions computed at the individual
appraisal level, so that mood is represented as an appraisal
frame. This initial model of mood captures some of the time
course and interactions among emotions, while ignoring
many of the complexities of a more complete model of
mood. Feeling is the combination of emotion and mood,
represented as an appraisal frame, augmented by an inten-
sity. Thus, in the previous model, what we reported as the
agent’s emotion with intensity (e.g., joy, 1.0) is actually
the agent’s feeling and feeling intensity. Since feeling is rep-
resented using an appraisal frame, the intensity calculation
we proposed previously (Section 3.5) still applies. For more
details, see Marinier and Laird (2007).

Fig. 10 shows how the agent generates an appraisal
frame (its emotion), which interacts with another appraisal
frame (its mood) to generate its perceived appraisal frame
(its feeling). Given a feeling frame, the system calculates
the intensity of that feeling (using the method described
in Section 3.5). The mood starts out neutral (i.e., all zero
values). To model the influence of emotion on mood, the
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mood ‘‘moves” towards the emotion each time step. In
the current model, we have adopted a simple approach
where the mood moves x% (our current experimental value
is 10%) of the distance along each dimension towards the
emotion in each cycle. Additionally, the system decays
mood by y% (experimental value is 1%) each cycle. Thus,
each emotion influences mood for a theoretically infinite
amount of time, but the magnitude of the influence
decreases exponentially with time. Therefore, if there were
no influence of emotion, mood would eventually become
neutral.

We make the simplifying assumption that the dimen-
sions are independent, so our combination function takes
as input a particular dimension from the mood and emo-
tion frames to produce the corresponding dimension of
the feeling frame. This function is applied to each dimen-
sion of the frames.

We used the following criteria to create our combination
function. Some of these criteria are derived from prior
work (see Marinier & Laird, 2007 for details):

(1) Distinguishability of inputs: Large input ranges
should have large output ranges. Capping of extreme
values may be necessary, but it should have minimal
impact.

(2) Limited range: C(vemotion, vmood) should be between
the input with the maximum magnitude and the
sum of the inputs.

(3) Non-linear: For small inputs, C is nearly additive, but
for large inputs, C is closer to a max. Put another
way, for small values the derivative of C can be close
to 1, but for large values, the derivative of C should
be closer to 0.

(4) Symmetry around 0: C(x, 0) = C(0, x) = x. If the
mood or emotion input is 0, then the other input
dominates. If they are both zero, then the result
should be zero.

(5) Symmetry of opposite values: C(x, �x) = 0. The
mood and emotion can cancel each other out.

(6) Symmetry of all values: C(x, y) = C(y, x). The mood
and emotion have equal influence on the feeling.
tional unification of cognitive behavior and emotion, Cognitive
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Using these criteria, we derived the following function
(based on Neal Reilly’s (2006) function):

Cðvmood; vemotionÞ ¼ 0:1 � SignðSÞ � logbðjS þ SignðSÞjÞ
where S ¼

X
v¼vmood ;vemotion

SignðvÞ � ðb10�jvj � 1Þ
� �

and SignðvÞ ¼
1 if v � 0

�1 else

�

and b ¼
e if Signðvmood; vemotionÞ ¼ 1

1:1 else

�

If Cðvmood; vemotionÞ > 1 then Cðvmood; vemotionÞ ¼ 1

If Cðvmood; vemotionÞ < �1 then Cðvmood; vemotionÞ ¼ �1

The combination function, together with the intensity
function we presented earlier, can sometimes lead to unex-
pected results. Even though the combination function has a
building effect (i.e., if the inputs have the same sign, the
magnitude of the result will be at least as large as the mag-
nitude of the largest input), this will not necessarily result
in a higher the intensity for the feeling. Given the way Out-
come Probability and Discrepancy from Expectation influ-
ence intensity via the surprise factor, even if both of those
values go up, the intensity may actually go down.

Unlike other models (Gratch & Marsella, 2004; Hudli-
cka, 2004; Neal Reilly, 1996) the mood and feeling pro-
cesses do not combine emotions; they combine individual
appraisals. This could lead to unexpected feelings. For
example, an emotion best described as elation–joy com-
bined with a mood best described as anxiety–worry can
result in a feeling best described as displeasure–disgust.
This is an interesting prediction of the model that we have
not yet investigated.

4.3. The influence of emotion, mood and feeling upon

behavior

Feeling adds knowledge to the state representation in a
task-independent format that combines representations of
current (emotion) and past (mood) situations, and thus is
more general than emotion or mood alone. Feeling can
be used to guide control, and thus it can influence behavior.
Task-dependent representations can still influence behavior
both directly (as in how the agent might choose to cope
with its feelings in a particular domain) and indirectly (in
that appraisals can be generated from task-dependent rep-
resentations). Emotion theories describe a number of influ-
ences of emotion, mood, and feeling, including effects on
cognitive processing (Forgas, 1999) and coping (Gross &
John, 2003), and integration with action tendencies (Frijda
et al., 1989). Our current approach is very simple, included
to demonstrate the possibility of feelings influencing behav-
ior and focusing on one aspect of coping: coping by giving
up on goals.

Most AI systems, when faced with a difficult or impos-
sible task, have no way to recognize that they should give
up and will work on the problem until all resources are
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exhausted. By providing emotional feedback, our model
allows the agent to detect that it is not making progress
towards the goal, and thus it can choose to discard that
goal (possibly so it can move on to another goal or stop
wasting resources). This behavior could be accomplished
without emotions, moods, and feelings, but they provide
a natural way to achieve this.

In our model, when the agent fails to make direct pro-
gress, it will form a subtask. While pursuing a subtask,
the agent can choose to give up if its current feeling of Con-
duciveness is negative. Giving up is another form of Task-
ing – it removes the current goal. As this feeling intensity
increases, the agent is exponentially more likely to give
up. Mood plays a role here by tempering or enhancing
the current emotion. Thus, if things are going well (mood
is positive) but the agent experiences a momentary setback
(emotion is negative), the overall feeling intensity will be
lower, making giving up less likely. If things have been
going poorly, however, the setback will build on that,
resulting in a more intense negative feeling, making giving
up more likely. The option to give up is in competition with
other activities in the subtask, specifically attending to pos-
sible directions in which it can move. That is, the agent still
makes a weighted random choice, with giving up being an
option whose weight is exponential in the magnitude of the
negative feeling intensity. As the agent eliminates more of
its Attend options (by Attending to and then Ignoring
them), it becomes more likely to give up (since there is less
competition from other Attend proposals).

While the current model only has this single direct influ-
ence of feelings on behavior, each appraisal of each stimu-
lus has an indirect influence. As described above, at the
Attend stage, the pre-attentive appraisals influence where
attention is focused next. Furthermore, past appraisals
influence the current feeling via mood, and thus indirectly
influence the agent’s decision to give up or not.
5. Evaluation

What kind of evaluation is appropriate for this model?
Clearly, given the computational nature of the system, it
is possible to generate quantitative results. However, given
the lack of human data or existing systems to compare to,
these results can only be used to support claims about the
system itself, as opposed to a comparison.

First we consider Picard’s (1997) properties that an emo-
tional system should have:

(1) Emotional behavior: system has behavior that
appears to arise from emotions.

(2) Fast primary emotions: system has fast ‘‘primary”

emotional responses to certain inputs.
(3) Cognitively generated emotions: system can generate

emotions, by reasoning about situations, especially as
they concern its goals, standards, preferences, and
expectations.
tional unification of cognitive behavior and emotion, Cognitive
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(4) Emotional experience: system can have an emotional
experience, specifically cognitive and physiological
awareness and subjective feelings.

(5) Body–mind interactions: system’s emotions interact
with other processes such as memory, perception,
decision making, learning, and physiology.

We begin with 3 (cognitively generated emotions). The
system has this property as it uses cognitively generated
appraisals as the basis for its emotions. Similarly, the sys-
tem exhibits 2 (fast primary emotions) because the system
generates appraisals beginning at the Perception and
Encoding phases, and those become active at the Attend
phase. While some have argued that appraisals are ‘‘too
cognitive,” and thus cannot be used to generate fast emo-
tional responses (Zajonc, 1984), Soar naturally supports
this fast appraisal generation, so long as no significant
inference is required (Marsella & Gratch, this issue).
Indeed, one implication of the Scherer (2001) theory is that
the relevance appraisals (suddenness, unfamiliarity, unpre-
dictability, intrinsic pleasantness, goal relevance) are gener-
ated very early, and our system reflects that. Moreover, as
soon as the appraisal frame becomes active, the appraisals
become the emotion. Then, as further processing generates
more appraisals, these are added to the emotion.

In terms of 4 (emotional experience), the system has
some emotional experience but it is incomplete. The system
is cognitively aware of its emotional state (the appraisals
and the resulting feeling are available in Soar’s working
memory). Also, the feelings are subjective in the sense that
the agent can, in principle, interpret them however it sees
fit. While we did not explore this here, there is nothing that
prevents cultural knowledge from being added that would
allow the agent to generate labels for or other interpreta-
tions of the feeling frame the system generates. However,
in the current implementations, it has only a trivial physi-
ological system.

For 5 (mind–body interactions), emotions can influence
decision making, in that the agent can decide to give up
when its emotional state is bad. We evaluate this quantita-
tively in the context of coherent behavior below. In Mari-
nier (2008), we describe an extension of this system that
learns as well. However, we have not yet explored connec-
tions to memories, perception, physiology, or a host of
other areas that could be influenced by emotion.

The remaining criterion, 1, is whether the agent exhibits
emotional behavior. We will explore this quantitatively
below.

Picard’s list can be extended with additional require-
ments. First, while we have described how the model works
at the micro level, we have not yet demonstrated that it
actually produces useful, purposeful behavior. Does it even
finish the task? If not, does its emotional state justify the
failure? Furthermore, there are several implications that
should be explored. For example, if an agent’s feelings
are determined by the available stimuli, then different envi-
ronments should lead to different feelings. Additionally,
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even in environments where the distance to the goal is
the same, since Attend takes information about the situa-
tion (in a task-independent representation) into account
(e.g., Suddenness), different environments should result in
different amounts of time to completion. We also claimed
in the last section that feelings should impact behavior,
both directly and indirectly. Thus, we suggest that there
should be a loop: behavior influences feelings, which influ-
ence behavior.

We will show results that suggest the model meets the
additional requirements described above (summarized
here):

(6) The model works and produces useful, purposeful
behavior.

(7) Different environments lead to differences in behav-
ior, including:
tional
(a) Different time courses
(b) Different feeling profiles
unific
given environment where the agent has choices,
choices impact feelings and thus the agent’s

ss.

these

succe

As discussed earlier, for simplicity, we used a non-human
agent in the synthetic Eaters environment. Thus, while we
present time course data, these data should not be mapped
onto real time for comparison to humans given the simplic-
ity of the Eaters environment, sensors, and effectors.

5.1. Methodology

To evaluate the agent, we used several different mazes in
the Eaters domain with a specific goal location in each. In
each maze, the distance from the start to the goal was 44
moves (except for the last maze, in which it was impossible
to reach the goal). Our aim in designing these mazes was to
place the agent in progressively more difficult situations to
demonstrate the properties listed above. In the first maze
(Fig. 11a), the agent did not have to ever retask to reach
the goal, and there were no distracting stimuli; that is, it
could not see any walls on its way to the goal. The second
maze (Fig. 11b) is exactly the same as the first except that
the path to the goal is lined with walls (and hence distrac-
tions). Thus, even though there are fewer possible moves,
there are just as many Attend opportunities, and they are
actually more interesting (hence, distracting). The third
maze (Fig. 11c) is very similar to the second, except that
there is a kink in the path that requires a brief retasking
to maneuver around. This is because the agent has no
direct way of making progress when it reaches the kink –
if it moves north, it will be further from the goal, and it
cannot move east because of the wall. Thus, retasking
allows it to temporarily move further from its original goal.
The fourth maze (Fig. 11d) contains twists and turns such
that four subtasks are required to reach the goal. In the
fifth maze (Fig. 11e), it is not possible to reach the goal.
ation of cognitive behavior and emotion, Cognitive



Fig. 11. Eaters mazes. (a) No distractions. (b) With distractions. (c) Distractions and one subtask. (d) Distractions and multiple subtasks. (e) Cannot be
completed.

Fig. 12. The bars show the number of decision cycles required to complete
each maze for the success and failure cases. The line shows the success
rate. All differences are statistically significant (1000 trials for each maze,
> 95% confidence level).
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5.1.1. Labeling appraisal frames

While the agent does not use linguistic labels to deter-
mine its behavior, we found such a labeling function is use-
ful in analyzing the agent’s behavior (indeed, we use it in
the results reported here). The labeling function is based
on the Manhattan distance between the agent’s appraisal
frame and the modal emotions defined by Scherer (see
Table 1). Since some modal emotions have many unspeci-
fied values (which are treated as distance 0), some emotions
are frequently closer to the feeling frame than others, even
when their specified appraisal values are not good matches.
Elation/joy is one such emotion (it has open values for
Intrinsic Pleasantness, Discrepancy from Expectation,
Control and Power). To compensate for this, we only con-
sidered modal emotions that have a Conduciveness with
the same sign (or an open Conduciveness). In other words,
we divided the emotions into positive and negative emo-
tions based on Conduciveness, and ensured that only labels
with the same valence as the frame could be applied. Thus,
it is not possible for a feeling with negative Conduciveness
to be labeled as elation/joy.

An unusual case in the labeling function is the displea-
sure–disgust label: Scherer defines it in terms of Intrinsic
Pleasantness rather than in terms of Conduciveness (see
Table 1), so we split instances of these into positive and
negative, as defined by whether Conduciveness was positive
or negative. Thus, positive displeasure–disgust is when that
label most closely matches the current feeling, but Condu-
civeness is positive. This can occur when the agent must do
something it dislikes, but is necessary to make progress in
the task. Real-life examples might be washing the dishes
or cleaning a toilet.
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5.2. Results

In the first two mazes, the agent will never give up, since
it never has to retask. However, we anticipate that the dis-
tractions from the walls in the second maze will make it
take significantly longer to complete than the first, and that
the agent will experience more negative emotions as a
result. In the last three mazes, retasking is required and
thus the agent can fail. In the third and fourth mazes, the
addition of the subtasks require extra processing that could
cause the agent to take longer to complete the mazes.
Moreover, in the fourth maze, the agent is likely to give
up before achieving the goal because of it detects it is not
tional unification of cognitive behavior and emotion, Cognitive
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making progress. We expect that the agent will alway give
up on the fifth maze because it is impossible to solve. We
expect this to take less time than the fourth maze, because
in the fourth maze the agent is always making progress,
whereas in the fifth maze, after the first subtask, the agent
detects that it is not making progress, which should lead
the agent to feel worse and hence give up sooner.

Fig. 12 shows the time course of behavior in the different
mazes, as well as the success rate in each maze. As we pre-
dicted, the mazes do lead to different time courses, which
fulfills property 7a (different time courses). In general, as
the mazes increase in difficulty, the agent takes longer to
complete (or give up on) them. When the agent does give
up, though, it takes less time. This makes sense since the
agent is stopping early. Still, the maze with multiple sub-
tasks takes longer than the maze with a single subtask
when the agent gives up. The impossible maze takes slightly
less (but still statistically significant) time to give up. This is
because, after the first subtask, all subtasks are considered
‘‘bad” subtasks, whereas in the other mazes all subtasks are
‘‘good” subtasks. This should mean that there are more
negative appraisals in the impossible maze, causing the
agent to feel worse and thus give up sooner.

In Fig. 13 we see that the data are consistent with this
analysis. The feeling labels in the figure are generated as
described in Section 5.1.1. In each maze’s feeling profile,
the positive feeling (elation–joy) instances outweigh the
negative feeling (anxiety–worry and displeasure–disgust)
instances except for the impossible maze, where the nega-
tive feelings dominate. We can also see that each maze pro-
duces a different feeling profile, and that feeling profiles
also differ between the success and failure cases. This sup-
ports property 7b (different feeling profiles). In contrast,
the failure cases for mazes 3 and 4, the positive and nega-
tive feelings are nearly equal. This is to be expected given
that the subtasks are ‘‘good,” the agent positively appraises
every move it makes (since it thinks it is making progress).
Fig. 13. The average number decision cycles each kind of feeling was
active. Labels were produced by our labeling function. Success and failures
for mazes 3 and 4 reported separately. ‘‘Other” includes Boredom-
Indifference, Fear, Positive displeasure–disgust, and Sadness-Dejection.
Differences between bars within a group (e.g., no distractions, etc.) are
statistically significant (1000 trials for each maze, > 95% confidence level).
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Thus, this offsets the negative feelings to some extent. How-
ever, each negative feeling in a subtask represents an
opportunity to give up, and these more frequent opportu-
nities lead to failure.

This, together with the data from Fig. 12 supports prop-
erties 1 (emotional behavior) and 8 (choices influence feel-
ings). That is, success and failure (both absolutely and in
terms of rate) are defined by different feeling profiles,
implying that feelings do influence behavior. Furthermore,
even within the same maze the success and failure cases
have different profiles, implying that the choices the agent
makes in those mazes impacts feelings and behavior.

Finally, the above analysis supports property 6 (pur-
poseful, useful behavior). That is, the agent’s behavior
and feeling profiles are expected given its task and environ-
ments. The agent completes the task in many cases, and
when it fails, it has a negative feeling profile which justifies
giving up.

As a final comment, as shown in Fig. 13, the agent expe-
riences a wide breadth of feeling types in these mazes (seven
different kinds according to our labeling function). Given
the limited nature of the domain, one might expect a much
more limited set of feelings. Indeed, we have shown that
multiple feelings can arise from simple manipulations of
the environment, even in similar situations. One way is
via interactions with the goal – adding structure that
requires subtasks leads to many different feelings emerging.
Another way is via interactions between mood (including
decay) and emotion. Sometimes, even though we might
classify a mood one way and an emotion another way, their
combination results in yet another classification. This pre-
diction could help explain why people are sometimes con-
fused about their feelings.

6. Related work

Like the Soar system we described in this paper, there
are several implemented computational systems that use
appraisal theory in some form and realize a functional
agent that can behave in some environment, and in fact
systems such as Gratch and Marsella’s (2004) EMA (EMo-
tion and Adaptation) inspired the current work. The pri-
mary goal of these systems is generating believable
behavior, and there is less of an emphasis on the underlying
theoretical integration of emotion and cognition, beyond
the assertion that cognition is required to generate apprais-
als. In addition to different goals, these systems differ from
the Soar system in two theoretically important ways. First,
most existing systems generate appraisals and emotions all
at once and then only rely on the emotion outcome. That is,
while the emotion has an impact on the system, the
appraisals do not. This property can be appreciated by
observing that the emotion generation could occur via a
non-appraisal process, and the system would not know
the difference. In contrast, appraisal generation is required
as part of the Soar agent’s normal processing – they cannot
be replaced by some other emotion-generation process.
tional unification of cognitive behavior and emotion, Cognitive



Table 4
Comparison summary

System Appraisal theory Emotion type Mood/feeling Incremental appraisals Appraisals required

EMA Mixture Categorical single Mood only Yes Coping only
MAMID Mixture Categorical multiple No No No
OCC/Em Mixture Categorical multiple Mood only No No
Kismet Circumplex Categorical single No No No
Our system Scherer Continuous single Yes Yes Yes
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Second, a consequence of appraisals being generated as
part of the Soar agent’s normal processing is that there is a
time course to the generated appraisals and resulting emo-
tions so that the during processing of a single stimulus, the
agent’s emotions can change as new information becomes
available. Many existing systems do not support this
because the appraisals are generated all at once.

In the remainder of this section we will briefly describe
various systems with respect to these two distinguishing
issues, as well as several other dimensions, including system
type (architecture or modular), which appraisal theory is
used, how many emotions the system can have and whether
they are categorical or continuous, and whether it has
mood and feeling. Table 4 summarizes the comparison.

EMA is a computational model of a simple appraisal
theory implemented in Soar 7 (an older version of Soar).
EMA uses its own appraisal theory based on common
dimensions from several existing theories. Like our model,
appraisals are generated incrementally, but attention does
not gate the generation of later appraisals. Rather, EMA
generates multiple appraisal frames at once, and an atten-
tion mechanism focuses on a single frame, which deter-
mines the emotion. One or more categorical labels are
then assigned to the single emotion instance; we interpret
this as more specific emotion labels, as opposed to multiple
emotions. EMA also has mood, which is an aggregate of all
current appraisal frames; in contrast, mood in our system is
an aggregate over previous emotions (including the current
emotion). Finally, the appraisals are required by EMA’s
coping mechanism, but not directly by other mechanisms
(e.g., the attention mechanism uses emotion intensity, but
not the appraisals).

MAMID (Hudlicka, 2004) is a system aimed at building
emotions into a cognitive architecture. MAMID’s architec-
tural mechanisms are higher level than Soar’s, making it
more a modular system by comparison. For example, it
has a Situation Assessment module and an Action Selec-
tion module, as opposed building these out of more prim-
itive components. Like EMA, the appraisals used are
common to many theories. Unlike our system, MAMID
generates an intensity for each of several categorical emo-
tions. While this is modulated by the previous emotion,
there is no separate mood concept. Appraisals in MAMID
are generated ‘‘all at once,” in the sense that the Affect
Appraiser module takes in information about the current
situation and outputs an emotional state. Thus, appraisal
is not necessarily required by the system, and could be
replaced by some other method for generating emotion.
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Ortony et al. (1988) describe a theory (commonly called
the OCC model) that was not originally intended for use in
systems that have emotion, but has since been implemented
for that purpose. We will discuss OCC in the context of
Neal Reilly’s (1996) Em system. As a theory, OCC does
not specify the architecture of the underlying system, but
Em is implemented as a modular system. OCC uses a small
set of appraisals inspired by existing theories to generate an
emotion hierarchy. In Em, multiple categorical emotions
can exist simultaneously. OCC only briefly touches on
mood, but leaves it unspecified. In Em, mood is an aggre-
gation of current emotions, similar to how EMA uses an
aggregate of current appraisal frames. Like MAMID, Em
uses an Emotion Generation module that takes a situation
description and outputs an emotion – the fact that it uses
OCC (and hence appraisal) internally is not critical to its
functioning. Like MAMID, then, appraisals are not gener-
ated incrementally.

Kismet (Breazeal, 2003) is a social robot. It is a modular
system, but as a functioning robot, it handles real percep-
tion and motor. It also has physiological drives. While it
has ‘‘appraisals,” these are arousal, valence, and stance,
which are better described as a circumplex model (Yik
et al., 1999). Kismet can be in a single categorical emotion
state at a time, and there is no mood (although the current
emotion can indirectly influence the next emotion). Apprai-
sal is not incremental, in the sense that all appraisal dimen-
sions always have a value. Additionally, the appraisal
information is only used to generate the emotions, and thus
is not actually required by the system.

7. Future work

There are vast, overlapping areas we have yet to explore.
One goal is to expand to a more complete model of emo-
tion, including its integration with the rest of cognition
and physiology. This expansion will likely provide addi-
tional constraints to help shape our theory, and our theory
may provide additional constraints on the theories in these
areas. For example, how we represent appraisals and emo-
tion may be influenced by these other areas, and vice versa.
Besides these areas, we will also discuss scalability, and
validation.

Beyond our very abstract mood model, the system has
no notion of physiology. Physiology plays critical roles in
action tendencies (Frijda et al., 1989), non-verbal commu-
nication such as facial expression (Ekman et al., 1987) and
tone of voice, and other more basic physiological measures
tional unification of cognitive behavior and emotion, Cognitive
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such as skin conductance, heart rate, and blood pressure.
Once a more complete physiological model is in place, we
can also explore introspection about the current physiolog-
ical state, for example, which may extend to emotion recog-
nition (Picard, 1997). Basic drives such as hunger and thirst
can also be explored in the context of emotion.

On the cognitive side, we have already scratched the sur-
face of learning elsewhere (Marinier, 2008; Marinier &
Laird, 2008), but that remains a major area for continued
research. For example, we have not yet explored how
appraisal values might be learned. We also need to explore
how emotion interacts with other cognitive mechanisms;
for example, the episodic and semantic memories depicted
in Fig. 2. Such a system could allow phenomena ranging
from priming effects (Neumann, 2001) to emotional intelli-
gence (Picard, 1997) to be explored. There is also the major
issue of whether the system described here will scale to
more complex environments and more complex appraisal
value generation (both of which we began to explore in
Marinier, 2008). But there is also the matter of simply gen-
erating more appraisals; for example, what about socially
oriented appraisals? Does the system scale to explaining
aspects of social interaction and culture?

Finally, there is the issue of validation. There are multi-
ple ways in which we might attempt to validate the system
going forward: believability (Neal Reilly, 1996), human
data, including timing (which we briefly explore in Mari-
nier, 2008), physiological measures, behavior, and decision
making (Gratch, Marsella, & Mao, 2006), and functional-
ity (e.g., learning, impact of additional appraisals, etc.),
which we have started exploring (Marinier, 2008; Marinier
& Laird, 2008).

This partial list demonstrates the vast amount of work
remaining; it seems unlikely that anything short of a com-
plete human intelligence system can actually address it all.
Indeed, this is perhaps a key point that emotion researchers
have been making for a long time: emotion is a key aspect
of human-level intelligence.

8. Conclusion

We have presented a novel integration of cognition and
emotion based on the functional fit between appraisal the-
ory and an abstract theory of cognitive control (PEAC-
TIDM): cognition (as PEACTIDM) provides the
processes necessary to generate emotions, whereas emotion
(via appraisals) provides the data which cognition (via
PEACTIDM) functionally demands. To evaluate the feasi-
bility of this theory, we extended the Soar cognitive archi-
tecture to include the computational mechanisms necessary
to support our proposed integration. We explored this sys-
tem within the context of a simple stimulus response task
and an ongoing task. Our evaluation centered on qualita-
tive and quantitative issues regarding whether the system
actually works and has features consistent with a complete
emotion system. For the most part, it succeeds, although
we discussed several avenues for future expansion.
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We summarize the key theoretical features of our pro-
posal as follows:

(1) Appraisals are a functionally required part of cogni-
tive processing; they cannot be replaced by some
other emotion generation theory.

(2) Appraisals provide a task-independent language for
control knowledge, although their values can be
determined by task-dependent knowledge. Emotion
and mood, by virtue of being derived from appraisals,
abstract summaries of the current and past states,
respectively. Feeling, then, augments the current state
representation with knowledge that combines the
emotion and mood representations and can influence
control.

(3) The integration of appraisal and PEACTIDM
implies a partial ordering of appraisal generation.

(4) This partial ordering specifies a time course of apprai-
sal generation, which leads to time courses for emo-
tion, mood and feeling.

(5) Emotion intensity is largely determined by expecta-
tions and consequences for the agent; thus, even
seemingly mundane tasks can be emotional under
the right circumstances.

(6) In general, appraisals may require an arbitrary
amount of inference to be generated.
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