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The Soar Cognitive Architecture 
(Laird, Newell, Rosenbloom, et al.; 1981-)

2
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The Soar Cognitive Architecture 
• Goal: General cognitive architecture

– Focus on routine to complex behavior, learning, autonomy, …

• Inspired by psychology and neuro-science
– Look to psychology for cognitive mechanisms and capabilities
– A cousin of ACT-R 

• Engineered using computer science
– Look to computer science and AI for efficient and robust implementations
– 200x faster than real-time execution over very large knowledge bases and 

hours of execution

• Available on all major platforms: Windows, iOS, Linux, Android
– Open source (BSD) 
– Integrated with many robotic platforms
– Over 100 systems implemented in Soar

3
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Soar Users’ Institutions
Academic
• UNICAMP – State University of Campinas (Brazil)
• Brigham Young University
• Cornell University
• George Mason University
• Georgia Tech
• University of Iowa
• KAIST (South Korea)
• University of Michigan
• Pace University
• Penn State University (Applied Research Laboratory)
• Universidade Presbiteriana Mackenziem (Brazil)
• Institute for Creative Technology, University of Southern California
• Universidad Tecnologica Nacional (Argentina)
• University of Zaragoza (Spain)

Commercial
• Soar Technology, Inc. (DoD R&D)
• Lexoris Learning
• ModuleMaster (automotive electronics)
• MTH Autonomous Intelligent Systems (cyber security)

DoD Research Laboratories
• Air Force Institute of Technology
• Air Force Research Laboratories
• Naval Postgraduate School

4
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Example Virtual Environments

TacAir/RWA-Soar
Complex Doctrine & 

Tactics

Amber EPIC-Soar
Modeling Human-

Computer Interaction

R1-Soar
Computer Configuration

ICT Virtual Human
Natural Interaction, 

Emotion 

5

Soar Quakebot
Anticipation

Haunt
AI Actors and Director

MOUTbot
Team Tactics

StarCraft
Spatial Reasoning & 
Real-time Strategy

Simulated Scout 
Spatial Reasoning &

Mental Imagery

Action Games
Spatial Reasoning & 

Reinforcement Learning

Liar’s Dice
Probabilistic reasoning and 

reinforcement learning

Viewpoints
Creative Human 

Interaction
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2009: Splinter, UM

Soar Robotic Platforms

1988: Robo-Soar, UM

2011: Magic, 
ST

1990: Hero-Soar, UM

2009: Penn State

6

2011: Superdroid, 
PSU

2012: BOLT, 
UM/ST

2013: REEM-C 
Pal Robotics

2014: Mindstorms, UM

2015: Magic 2, UM2010: Soar Tech2004: Adapt, Pace 
U

2012: rGator, ST 2013: Summit, ST

2015: Penn State
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Soar 9 Structure
Symbolic Long-Term Memories 

Symbolic Working Memory

Procedural

D
ec

is
io

n 
Pr

oc
ed

ur
e

ChunkingReinforcement
Learning

Action

Semantic

Semantic
Learning

Episodic

Episodic
Learning

Spatial Visual System

• Object features & relations among objects
• Active goals and actions: stack the blocks, stack the blue cylinder on the red block
• Retrievals from memory: words corresponding to colors, shapes, …
• Internal reasoning results:…

Skills: How to stack a block; 
how to pickup a block; 
how to parse a sentence, …

Facts: people, places, …
Mappings from words to 
perceptual symbols, …

Experiences: what happened in 
the past 

Object-based continuous 
metric space

Perception

Predicate 
ProjectionController

Fire rules to 
Evaluate 
operators

Input Output
Fire rules to 

Apply selected
operator

Output & 
Memory Access

Fire rules to 
Propose
operators

Decide



88

Problem Spaces
• State: the current situation the agent is in
• Operators: transition to new state

– Internal reasoning steps with changes to working memory
• Logical deduction and inference, simple math, …

– Retrievals from long-term semantic or episodic memory
– Mental imagery actions
– External motor actions

• Goals: states to be achieved

A B
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Soar Basic Functions
Soar represents procedural knowledge as rules

1. Input from environment
2. Elaborate current situation: parallel rules
3. Propose and evaluate operators via preferences: parallel rules
4. Select operator
5. Apply operator: Modify internal data structures: parallel rules
6. Output to motor system [and access to long-term memories]

Assumptions:
• Complex behavior arises from multiple cycles.
• Each cycle is bounded processing to maintain reactivity. 
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Operators and States 
for Colored Blocks World

States
– Objects 

• blocks [color, name]
• paint brushes for specific colors [color]

– Initially all blocks are white

Operators:
– Initialize-blocks-world
– Paint a block with a different paint brush color

Goal:
– All blocks are red

Multiple operators can be proposed at the same time.
Use preferences to select between them.

A B
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Basic Soar Operation

A B

State Operators proposed
by rules creating 
preferences

O1+. Paint [A] [Red]

O2+. Paint [A] [Blue]

O3+. Paint [A] [Green]

O4+. Paint [B] [Red]

…

Proposed operators 
evaluated by rules

If block [X] is not color [Y],
then propose Paint [X] with [Y].

If operator has color [Red],
then make best preference

(O1 >) Best preference

(O4 >) Best preference

Operator 
selected by 
decision 
procedure

Select O1

Operator 
applied by 
rule

If Paint block [X] with color 
[Y] selected, 
then change [X] color to [Y].

A
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Example Working Memory
Working memory is a graph.
All working memory elements must be “linked” directly or indirectly to a 
state.

State: blocks [color, name]
paint brushes for specific colors [color]

B14

B23S1
block

block

block

A

white

type

name

color

block

B

white

type

name
color

(S1 ^block B14)
(S1 ^block B23)
(S1 ^color red)
(S1 ^color blue)
(S1 ^color green)
(B14 ^type block)
(B14 ^name A)
(B14 ^color white)
(B23 ^type block)
(B23 ^name B)

(B23 ^color white)

(S1 ^block B14 B23
^color red blue green)

(B14 ^type block ^name A   
^color white)

(B23 ^type block ^name B    
^color white)

color

color
red

blue

green
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Defining Task in Soar
Create rules for:
• Initialize-color-block operator

– Propose initialize-color-block
– Apply initialize-color-block

• Color-block operator
– Propose color-block
– Select color-block
– Apply color-block

• Detect goal achieved

Fire rules to 
Evaluate 
operators

Fire rules to 
Apply selected

operator

Fire rules to 
Propose
operators

Decide
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If there the top state does not have the name “color-block” 
then propose the operator to initialize-color-blocks. 

sp {propose*initialize-color-blocks
(state <s> ^superstate nil

-^name color-block)
-->
(<s> ^operator <o> +)
(<o> ^name initialize-color-blocks)}

If the initialize-color-blocks operator is selected, then add the name to the state and add the 
colors, and create the blocks A, B, and C.

sp {apply*initialize-color-blocks
(state <s> ^operator.name initialize-color-blocks)
-->
(<s> ^name color-block

^color red green blue
^block <b1> <b2> <b3>)

(<b1> ^type block
^color white
^name A)

(<b2> ^type block
^color white
^name B)

(<b3> ^type block
^color white
^name C)}

Apply initialize-color-block

Propose initialize-color-block
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If there is a block that has a color different than an existing color,
then propose the operator to color that block that color, 
also create an indifferent preference. 

sp {propose*color-block
(state <s> ^color <color>

^block <block>)
(<block> ^color <> <color>)
-->
(<s> ^operator <o> +)
(<s> ^operator <o> =) 
(<o> ^name color-block

^color <color>
^block <block>)}

Propose color-block

If there is an operator selected to color a block a color,      
color that block that color.

sp {apply*color-block
(state <s> ^operator <o>)
(<o> ^name color-block

^color <color>
^block <block>)

(<block> ^name <name>
^color <old-color>)

-->
(write (crlf) |Paint block | <name> | | <color>)
(<block> ^color <old-color> -

^color <color>)}

Apply color-block
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# If an operator is proposed that will color red, then 
# create a best preference for it.
sp {prefer*color-red   

(state <s> ^operator <o> +)
(<o> ^color red)
-->
(<s> ^operator <o> >)}

# If an operator will color red and another operator 
# will color green or blue, then create a better 
# preference. 
sp {prefer*color-red-to-blue  

(state <s> ^operator <o1> +
^operator <o2> +)

(<o1> ^color red)
(<o2> ^color << green blue >>)
-->
(<s> ^operator <o1> > <o2>)}
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Goal Detection
# If all blocks are color “red’ then halt.

sp {detect*color-red   
(state <s> ^block <a> <b> <c>)
(<a> ^name A ^color red)
(<b> ^name B ^color red)
(<c> ^name C ^color red)
-->
(halt)}
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Persistence!
• Actions of non-operator application rules retract when rule no longer matches

– No longer relevant to current situation
– Operator proposals and state elaboration
– Instantiation-support = i-support
– Rule doesn’t test the selected operator and modify state.

• Elaborate state
• Propose operator
• Create operator preferences

• Actions of operator application rules persists indefinitely
– Otherwise actions retract as soon as operator isn’t selected
– Operators perform non-monotonic changes to state
– Operator-support = o-support
– Rule tests the selected operator and modifies the state

• Operator application
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Simple Eater
Actions: 

forward: move one cell
rotate:    turn right

State:
sensory data: input-link
internally maintained: state

Get points for eating food.
-1 for each forward/rotate.
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Input/Output in Soar
• All input and output happens through working memory.
• Input is added by perception during input phase:

– (<s> ^io.input-link <input>)

• Output commands are created by rules on:
• (<s> ^io.output-link <output>)
– Sent to motor system in output phase
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Propose and apply initialize-eater

If there the top state does not have the name “eater” 
then propose the operator to initialize-eater. 

sp {propose*initialize-eater
(state <s> ^superstate nil

-^name eater)
-->
(<s> ^operator <o> +)
(<o> ^name initialize-eater)}

sp {apply*initialize-eater
(state <s> ^operator.name initialize-eater)
-->
(<s> ^name eater)}
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Simple Eater Input-link

(<s> ^io.input-link <input>)
(<input> ^east red          # absolute directions and contents

^north wall
^south red         # these change with forward
^west purple

^back purple       # relative directions and contents
^front red
^left wall         # these change with rotate or forward
^right red

^orientation east  # this changes with rotate

^score 0
^score-diff 0
^food-remaining 10 # 0 when eaten all food

^x 1               # these change with forward
^y 2

^time 1            # this changes with rotate/forward)
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Propose and Apply Forward

# if the task is eater and there is something in front,
#  then propose moving forward
sp {random*propose*forward

(state <s> ^name eater
^io.input-link.front <f>)    # will blink 

-->
(<s> ^operator <op> + =)
(<op> ^name forward)}

# if operator forward is selected, then put the forward
#  command on the output-link
sp {apply*forward

(state <s> ^operator <op>
^io.output-link <out>)

(<op> ^name forward)
-->

(<out> ^forward <f>)}
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Propose and Apply Rotate

# if the task is eater and there is something in front,
#  then propose rotate
sp {random*propose*rotate

(state <s> ^name eater
^io.input-link.front) # will blink 

-->
(<s> ^operator <op> + =)
(<op> ^name rotate)}

# if operator rotate is selected, then put the rotate
#  command on the output-link
sp {apply*rotate

(state <s> ^operator <op>
^io.output-link <out>)

(<op> ^name rotate)
-->

(<out> ^rotate <r>)}
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Cleaning up output-link
Need to remove structures on the output-link.
Can do this when an operator is selected and get back 
^status complete.

sp {apply*cleanup*output-link
(state <s> ^operator <op>

^io.output-link <out>)
(<out> ^<cmd> <id>)
(<id> ^status complete)

-->
(<out> ^<cmd> <id> -)

}



2626

Detecting Completion

If there is no food remaining, halt.

sp {task*complete
(state <s> ^name eater

^io.input-link.food-remaining 0)
-->

(halt)
}
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Smarter Eater

• Reject moving forward into walls
• Avoid moving forward into empty cells
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Reject wall, Avoid empty
# If forward is proposed and there is a wall in front, 
#  then reject that operator
sp {eater*reject*forward*wall

(state <s> ^operator <o> +
^io.input-link.front wall)

(<o> ^name forward)
-->

(<s> ^operator <o> -)}

# If forward is proposed and there is an empty cell in front, 
#  and there is a non-empty, non-wall in some other direction
#  then prefer turning to forward
sp {eater*avoid*forward*empty

(state <s> ^operator <o1> +
^operator <o2> +
^io.input-link <input>)

(<input> ^<< left right back >> { <> empty <> wall })
(<o1> ^name forward)
(<o2> ^name rotate)

-->
(<s> ^operator <o1> < <o2>)}


