
1

Soar Basics
[45 min]

Soar Tutorial
July, 2016

22

The Soar Cognitive Architecture
(Laird, Newell, Rosenbloom, et al.; 1981-)

2

33

The Soar Cognitive Architecture
• Goal: General cognitive architecture

– Focus on routine to complex behavior, learning, autonomy, …

• Inspired by psychology and neuro-science
– Look to psychology for cognitive mechanisms and capabilities
– A cousin of ACT-R

• Engineered using computer science
– Look to computer science and AI for efficient and robust implementations
– 200x faster than real-time execution over very large knowledge bases and

hours of execution

• Available on all major platforms: Windows, iOS, Linux, Android
– Open source (BSD)
– Integrated with many robotic platforms
– Over 100 systems implemented in Soar

3

44

Soar Users’ Institutions
Academic
• UNICAMP – State University of Campinas (Brazil)
• Brigham Young University
• Cornell University
• George Mason University
• Georgia Tech
• University of Iowa
• KAIST (South Korea)
• University of Michigan
• Pace University
• Penn State University (Applied Research Laboratory)
• Universidade Presbiteriana Mackenziem (Brazil)
• Institute for Creative Technology, University of Southern California
• Universidad Tecnologica Nacional (Argentina)
• University of Zaragoza (Spain)

Commercial
• Soar Technology, Inc. (DoD R&D)
• Lexoris Learning
• ModuleMaster (automotive electronics)
• MTH Autonomous Intelligent Systems (cyber security)

DoD Research Laboratories
• Air Force Institute of Technology
• Air Force Research Laboratories
• Naval Postgraduate School

4

55

Example Virtual Environments

TacAir/RWA-Soar
Complex Doctrine &

Tactics

Amber EPIC-Soar
Modeling Human-

Computer Interaction

R1-Soar
Computer Configuration

ICT Virtual Human
Natural Interaction,

Emotion

5

Soar Quakebot
Anticipation

Haunt
AI Actors and Director

MOUTbot
Team Tactics

StarCraft
Spatial Reasoning &
Real-time Strategy

Simulated Scout
Spatial Reasoning &

Mental Imagery

Action Games
Spatial Reasoning &

Reinforcement Learning

Liar’s Dice
Probabilistic reasoning and

reinforcement learning

Viewpoints
Creative Human

Interaction

66

2009: Splinter, UM

Soar Robotic Platforms

1988: Robo-Soar, UM

2011: Magic,
ST

1990: Hero-Soar, UM

2009: Penn State

6

2011: Superdroid,
PSU

2012: BOLT,
UM/ST

2013: REEM-C
Pal Robotics

2014: Mindstorms, UM

2015: Magic 2, UM2010: Soar Tech2004: Adapt, Pace
U

2012: rGator, ST 2013: Summit, ST

2015: Penn State

77

Soar 9 Structure
Symbolic Long-Term Memories

Symbolic Working Memory

Procedural

D
ec

is
io

n
Pr

oc
ed

ur
e

ChunkingReinforcement
Learning

Action

Semantic

Semantic
Learning

Episodic

Episodic
Learning

Spatial Visual System

• Object features & relations among objects
• Active goals and actions: stack the blocks, stack the blue cylinder on the red block
• Retrievals from memory: words corresponding to colors, shapes, …
• Internal reasoning results:…

Skills: How to stack a block;
how to pickup a block;
how to parse a sentence, …

Facts: people, places, …
Mappings from words to
perceptual symbols, …

Experiences: what happened in
the past

Object-based continuous
metric space

Perception

Predicate
ProjectionController

Fire rules to
Evaluate
operators

Input Output
Fire rules to

Apply selected
operator

Output &
Memory Access

Fire rules to
Propose
operators

Decide

88

Problem Spaces
• State: the current situation the agent is in
• Operators: transition to new state

– Internal reasoning steps with changes to working memory
• Logical deduction and inference, simple math, …

– Retrievals from long-term semantic or episodic memory
– Mental imagery actions
– External motor actions

• Goals: states to be achieved

A B

99

Soar Basic Functions
Soar represents procedural knowledge as rules

1. Input from environment
2. Elaborate current situation: parallel rules
3. Propose and evaluate operators via preferences: parallel rules
4. Select operator
5. Apply operator: Modify internal data structures: parallel rules
6. Output to motor system [and access to long-term memories]

Assumptions:
• Complex behavior arises from multiple cycles.
• Each cycle is bounded processing to maintain reactivity.

1010

Operators and States
for Colored Blocks World

States
– Objects

• blocks [color, name]
• paint brushes for specific colors [color]

– Initially all blocks are white

Operators:
– Initialize-blocks-world
– Paint a block with a different paint brush color

Goal:
– All blocks are red

Multiple operators can be proposed at the same time.
Use preferences to select between them.

A B

1111

Basic Soar Operation

A B

State Operators proposed
by rules creating
preferences

O1+. Paint [A] [Red]

O2+. Paint [A] [Blue]

O3+. Paint [A] [Green]

O4+. Paint [B] [Red]

…

Proposed operators
evaluated by rules

If block [X] is not color [Y],
then propose Paint [X] with [Y].

If operator has color [Red],
then make best preference

(O1 >) Best preference

(O4 >) Best preference

Operator
selected by
decision
procedure

Select O1

Operator
applied by
rule

If Paint block [X] with color
[Y] selected,
then change [X] color to [Y].

A

12

Example Working Memory
Working memory is a graph.
All working memory elements must be “linked” directly or indirectly to a
state.

State: blocks [color, name]
paint brushes for specific colors [color]

B14

B23S1
block

block

block

A

white

type

name

color

block

B

white

type

name
color

(S1 ^block B14)
(S1 ^block B23)
(S1 ^color red)
(S1 ^color blue)
(S1 ^color green)
(B14 ^type block)
(B14 ^name A)
(B14 ^color white)
(B23 ^type block)
(B23 ^name B)

(B23 ^color white)

(S1 ^block B14 B23
^color red blue green)

(B14 ^type block ^name A
^color white)

(B23 ^type block ^name B
^color white)

color

color
red

blue

green

1313

Defining Task in Soar
Create rules for:
• Initialize-color-block operator

– Propose initialize-color-block
– Apply initialize-color-block

• Color-block operator
– Propose color-block
– Select color-block
– Apply color-block

• Detect goal achieved

Fire rules to
Evaluate
operators

Fire rules to
Apply selected

operator

Fire rules to
Propose
operators

Decide

1414

If there the top state does not have the name “color-block”
then propose the operator to initialize-color-blocks.

sp {propose*initialize-color-blocks
(state <s> ^superstate nil

-^name color-block)
-->
(<s> ^operator <o> +)
(<o> ^name initialize-color-blocks)}

If the initialize-color-blocks operator is selected, then add the name to the state and add the
colors, and create the blocks A, B, and C.

sp {apply*initialize-color-blocks
(state <s> ^operator.name initialize-color-blocks)
-->
(<s> ^name color-block

^color red green blue
^block <b1> <b2> <b3>)

(<b1> ^type block
^color white
^name A)

(<b2> ^type block
^color white
^name B)

(<b3> ^type block
^color white
^name C)}

Apply initialize-color-block

Propose initialize-color-block

1515

If there is a block that has a color different than an existing color,
then propose the operator to color that block that color,
also create an indifferent preference.

sp {propose*color-block
(state <s> ^color <color>

^block <block>)
(<block> ^color <> <color>)
-->
(<s> ^operator <o> +)
(<s> ^operator <o> =)
(<o> ^name color-block

^color <color>
^block <block>)}

Propose color-block

If there is an operator selected to color a block a color,
color that block that color.

sp {apply*color-block
(state <s> ^operator <o>)
(<o> ^name color-block

^color <color>
^block <block>)

(<block> ^name <name>
^color <old-color>)

-->
(write (crlf) |Paint block | <name> | | <color>)
(<block> ^color <old-color> -

^color <color>)}

Apply color-block

1616

If an operator is proposed that will color red, then
create a best preference for it.
sp {prefer*color-red

(state <s> ^operator <o> +)
(<o> ^color red)
-->
(<s> ^operator <o> >)}

If an operator will color red and another operator
will color green or blue, then create a better
preference.
sp {prefer*color-red-to-blue

(state <s> ^operator <o1> +
^operator <o2> +)

(<o1> ^color red)
(<o2> ^color << green blue >>)
-->
(<s> ^operator <o1> > <o2>)}

1717

Goal Detection
If all blocks are color “red’ then halt.

sp {detect*color-red
(state <s> ^block <a> <c>)
(<a> ^name A ^color red)
(^name B ^color red)
(<c> ^name C ^color red)
-->
(halt)}

1818

Persistence!
• Actions of non-operator application rules retract when rule no longer matches

– No longer relevant to current situation
– Operator proposals and state elaboration
– Instantiation-support = i-support
– Rule doesn’t test the selected operator and modify state.

• Elaborate state
• Propose operator
• Create operator preferences

• Actions of operator application rules persists indefinitely
– Otherwise actions retract as soon as operator isn’t selected
– Operators perform non-monotonic changes to state
– Operator-support = o-support
– Rule tests the selected operator and modifies the state

• Operator application

1919

Simple Eater
Actions:

forward: move one cell
rotate: turn right

State:
sensory data: input-link
internally maintained: state

Get points for eating food.
-1 for each forward/rotate.

2020

Input/Output in Soar
• All input and output happens through working memory.
• Input is added by perception during input phase:

– (<s> ^io.input-link <input>)

• Output commands are created by rules on:
• (<s> ^io.output-link <output>)
– Sent to motor system in output phase

2121

Propose and apply initialize-eater

If there the top state does not have the name “eater”
then propose the operator to initialize-eater.

sp {propose*initialize-eater
(state <s> ^superstate nil

-^name eater)
-->
(<s> ^operator <o> +)
(<o> ^name initialize-eater)}

sp {apply*initialize-eater
(state <s> ^operator.name initialize-eater)
-->
(<s> ^name eater)}

2222

Simple Eater Input-link

(<s> ^io.input-link <input>)
(<input> ^east red # absolute directions and contents

^north wall
^south red # these change with forward
^west purple

^back purple # relative directions and contents
^front red
^left wall # these change with rotate or forward
^right red

^orientation east # this changes with rotate

^score 0
^score-diff 0
^food-remaining 10 # 0 when eaten all food

^x 1 # these change with forward
^y 2

^time 1 # this changes with rotate/forward)

2323

Propose and Apply Forward

if the task is eater and there is something in front,
then propose moving forward
sp {random*propose*forward

(state <s> ^name eater
^io.input-link.front <f>) # will blink

-->
(<s> ^operator <op> + =)
(<op> ^name forward)}

if operator forward is selected, then put the forward
command on the output-link
sp {apply*forward

(state <s> ^operator <op>
^io.output-link <out>)

(<op> ^name forward)
-->

(<out> ^forward <f>)}

2424

Propose and Apply Rotate

if the task is eater and there is something in front,
then propose rotate
sp {random*propose*rotate

(state <s> ^name eater
^io.input-link.front) # will blink

-->
(<s> ^operator <op> + =)
(<op> ^name rotate)}

if operator rotate is selected, then put the rotate
command on the output-link
sp {apply*rotate

(state <s> ^operator <op>
^io.output-link <out>)

(<op> ^name rotate)
-->

(<out> ^rotate <r>)}

2525

Cleaning up output-link
Need to remove structures on the output-link.
Can do this when an operator is selected and get back
^status complete.

sp {apply*cleanup*output-link
(state <s> ^operator <op>

^io.output-link <out>)
(<out> ^<cmd> <id>)
(<id> ^status complete)

-->
(<out> ^<cmd> <id> -)

}

2626

Detecting Completion

If there is no food remaining, halt.

sp {task*complete
(state <s> ^name eater

^io.input-link.food-remaining 0)
-->

(halt)
}

2727

Smarter Eater

• Reject moving forward into walls
• Avoid moving forward into empty cells

2828

Reject wall, Avoid empty
If forward is proposed and there is a wall in front,
then reject that operator
sp {eater*reject*forward*wall

(state <s> ^operator <o> +
^io.input-link.front wall)

(<o> ^name forward)
-->

(<s> ^operator <o> -)}

If forward is proposed and there is an empty cell in front,
and there is a non-empty, non-wall in some other direction
then prefer turning to forward
sp {eater*avoid*forward*empty

(state <s> ^operator <o1> +
^operator <o2> +
^io.input-link <input>)

(<input> ^<< left right back >> { <> empty <> wall })
(<o1> ^name forward)
(<o2> ^name rotate)

-->
(<s> ^operator <o1> < <o2>)}

