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Introduction
The plane-wave expansion method has been the basis for much of the understanding of
photonic and electrical behavior in crystals. As it was originally presented, Floquet's
theorem was a solution to Mathieu's equation and later extended to Hill's equation for
periodic media [1]. Among the results of Floquet's theorem is quantum band theory,
which is used to describe electron behavior in periodic potentials. Bloch's theorem,
which can be regarded as the 3d generalization of Floquet's theorem, states that the
eigenfunctions ofthe Schr6dinger equation for crystals are composed ofthe products of a
plane wave and a function with the same periodicity at the crystalline lattice. Though it's
less used, Bloch's theorem applies equally to electromagnetic propagation in periodic
structures.
Two-dimensional periodic structures are commonly used in a number of Electromagnetic
Bandgap (EBG) applications. There has been somewhat less concern, however, with the
electromagnetic propagation and bandgap behavior of 3d dielectric structures. Much of
this is to due the fact that most 3d periodic dielectric structures cannot be fabricated
efficiently, but with developments of Ceramic Stereolithography, this is beginning to
change [2]. The principle concern of this study is to understand electromagnetic
propagation behavior in a ceramic cubical lattice (Fig. 1). The cubical lattice has several
advantages for the design of millimeter-wave components; particularly it has an isotropic
symmetry and a wide effective dielectric contrast over the achievable linewidth-to-period
ratios [3].

Plane-wave Expansion
For a given propagation vector k, Bloch's theorem states that the fields in a periodic
lattice are given by:

H(x,y,z) = HP(X,y,z)e&kr (1)
where BP represents the 3D periodic function that has the same period as the lattice. The
fields in the structure obey the source free wave equation.

£rVH2 +V x(vxH)=k H (2)

Owing to their periodic properties, the Fourier basis is the natural choice to describe the
dielectric lattice and the periodic component of the magnetic field. By defining the
periodic magnetic field and the reciprocal of the dielectric lattice function by its Fourier
coefficients-Iff,,,,p, and c~',,, respectively-quantities may be expressed by equivalent
simple Fourier expansions.
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Fig 1: (a) 8 periods of the cubical substructure, (b) one period of the
cubical substructure with equivalent circuit
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(F)= HP(F)eJk- = HfP-pe je--Fe = H-P-pei (3b)
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To simply computation, the vectors are defined as:

=c LJ LyJ L (4a)
W, k + {mn (4b)

The periodic plane-wave expansion of the wave equation can be expressed as a
convolution by substituting (3) into (2) and taking inner product with an orthogonal basis.

P. (5)mn~~~~~~~~~~ P

Unlike similar ID and 2D equations for electromagnetic propagation in periodic
stractures, the H-field components in (5) cannot generally be separated in the orthogonal
TE and TM modes. Rather every field component is coupled to every other field
component through the s *H term. This is intuitively obvious in the 3D structure, and
only as (5) generalizes to the 1- and 2-dimensional cases do the fields decouple. This
does, however, present some degree of computational difficulty. Equation (5) may be
rewritten:

E AL_m.m.pp. A-._.Pmsp. A:mmmpHPn_ koWmPn, (6)
hepeA-.maielAemnsaedAefnea

Where the matrix elements are defined as
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(7)'nn'pp' rn.-m'n-np-p' X{4m-m',n-n',p-p'mnp +1w.p m-m'n-n'p-p' *m'np' >a#

By mapping mnp to a single variable s and m'np' to s', it becomes possible to express
(6) as a matrix multiplication of a matrix K, with constituent matrices As ;, and the vector
v, with constituent vectors Hs.
One way to state (6) in words is to say that for a given dielectric structure and a given
frequency, there will be some set of vectors k which satisfy the relation. The converse
interpretation is that for a given structure and a given k, only waves with certain
frequencies may propagate. Since the frequency term presents itself only in ko, the
frequencies which propagate for a given periodic delay, kL, may be determined by the
eigenvalues ofK.

Kv- = tko'v (8)

The eigenvalues of the system represent the squares of the propagating frequencies, and
the eigenvectors represent the corresponding field profiles. Each eigenvalue does not,
however, correspond to a propagating mode; those eigenvalues which correspond to
eigenmodes orthogonal to propagation do not propagate by the traditional sense. This
phenomenon is a lattice equivalent to transverse and normal fields. In a symmetric
lattice, the propagating and non-propagating modes can be distinguished from the
multiplicity of the eigenvalues. If every mode were calculated, there would be a
countable number of frequencies which would propagate with a given phase delay, but
since the number ofmodes used in the calculation must be truncated, so must the number
of solutions. In this case, the solutions of greatest interest are the smallest eigenvalues
representing the lowest order of propagation. In the lowest order of propagation, the
effective dielectric constant of the medium is easily determined by the change in the
propagation over frequency.

eff =(C J (9)

Propagation and Bandgap Behavior of a Cubical Ceramic Lattice
The Fourier coefficients ofthe cubical alumina (A1203) lattice are defined as:

a3 1 I6L an;r apr +
L c amr,. 1apr

£ p= A3 La 0Y L ) L a)L),. L ) (10)
L .(amxin an7rA _. (amr ( anA (apr>] +666
a L o L)-1LL Y L) n L )J + o, Op

The low-frequency effective dielectric constant determined using the plane-wave
expansion (Fig 2) shows the effective dielectric constant is slightly less than that
predicted with the quasi-static approximation [3]. Due to the negative concavity of the
lowest-order propagation (Fig 3), the effective dielectric will increase slightly as the
frequency becomes higher. The linearity of the propagation curve away from the vertex
suggests that the cubical lattice can be reasonably regarded as non-dispersive when the
periodicity is less than 35% of the guided wavelength. Physical measurements of the
effective dielectric constant of alumina cubical lattice structures have confirmed this to be
true. In order to verify the bandgap nature of the analysis, simulations using Ansoft
HFSS show that transmission characteristics through 7 periods of the cubical lattice are
consistent with bandgap behavior predicted by (8).
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Fig 2: Low-frequency effective dielectric for
plane-wave expansion and quasi-static approximation
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Fig 3: Bandgap behavior of a cubical
lattice for a = L/2, (AI203)
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Fig 4: Ansoft HFSS simulation of transmission through
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