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1. INTRODUCTION

Scatiering from 1bin dieleciric sheeis is encounvered in certain practical sitwations. To simplify
the problem a thin dielectric structure is uswally medeled with a resistive sheet. Among the
canonical problems scattering by a resistive strip has been intensively studied by a number of
researchers. Many approximate solutions have been proposed for the problem, which all are based
on the known exact solution for a resistive balf plane. Uniform solutions valid at the transition
segions between the shadow and reflection boundaries for the half-plane is needed to obtain higher
order multiple interactions between two edges of a finite strip. One such method is the Extended
Spectral Ray Method (ESRM) [1], which can be applied to a general multiple scattering problems
with some analytical complexity. However as explained, all existing metheds use the formulation
for the half-plane, and hence the resulting solutions contain a transcendental function known as
Maliuzhinets function.

Recently an approximate solution for a thin dielectric object with any size and shape was
proposed [2). The solution is represented in termns of a speetral integral whose imtegrand contains
only elementary functions. Based on this formal solution, a uniform soluticn for bistatic scattering
by a thin dielectric strip is formulated for a TM wave incidence. Through comparisons of resulis
calculated by the uniform solution and a npumerical method such as a method of mements (MoM),
the new formulation is verified for several cases. One advantage of the new formulation is that it
is expressed in terms of elementary functions, and thus it is much easer to understand scatrering
behavior.

II. FORMULATION
When a TM wave is incident on a thin dielectric strip as seen in Fig. 1, the scattered field in
the far-field region is represented as Ef ~ 9\/‘—,&%&“’0"’"" 4 p,(6,,8;). Here P.(-) = #{ is known
as the far-field amplitude and an approximate solution for [ is given by {2]
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Here “+” is chosen for I, and “-" for f5. Simply it can be shown that I, = A5, After lengthy
algebraic manipulation, I can be evaluated analytically and given by
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However, J» cannot be carried out analytically, and so an asymptotic technique such as steepest
descent method (SDM) can be used to obtain an anaiytical formulation, Since the integrand in &
has four poles at k, = ki, i, and =+/1— oiky, first, the integrand can be transformed into a more
conventional form applymg the SDM approximation:
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Since these integrands have poles, the pole contribution should be carefully taken account into
to obtain uniform solution. Following the standard SDM procedure 3], a upiform splution is
obtained and given by
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Iy is given by

£y = wHLD (kgw) + M0 [To, i % +i1cbw(\/kow:1)]
where Ty = /sy, and 51 = /{1 — /1= /%), b= ;i,'_—, and w(z) = £ :,,'z - —e"zerfc(—iz)

[3]. Here erfc(-) is the complementary error function. And f; is glven by
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where bf = —1 ~ 7’31-2’4-1 Ti=n{l— )1+ i) + 8/, T =201 +k) - 274 /T, P =

i (K — 1)e™oiv, and o, = /T{T—K).

For forward scattering direction (kj; = k}), the expressions for Iy and & have a removable pole.
Therefore for this case we need to take limit of 1y and /» as &} — k5. For I, only f) should be
modified as
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I is more complicated, and using L'Hospital rule, the final result is given by
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where P! = ime#®%w(nid —1). For the case of & = k% and (k| = 1 (forward scanering when edge-

on incidence), the above expression contains several divergent terms such as 71’:?. but these
"X
terms cancel each other. Therefore by rearranging the divergent termns and using the first-order

asymptotic expansion of w(-) function, {1} is modified slightly into
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In fy, fi is simplified again into fi = —2n%(g1 — #)- & and I3 are given by

B or 1 = I — iznnefad —ngi (kgw) + (1 4d)eiow (ﬁ'ﬁ + k(1 +l’))
Here “+" is chosen for I and *-" for fj.

III. NUMERICAL RESULTS

The first example is a simulation of backscattering and scattering in forward direction from a
thin dielectric strip with thickness 0.025) and €, =4 + /0.4, Figures 2 and 3 show comparisons
of normalized radar echo width of the strip as a function of w/Ag, which are calculated by the
proposed solation given in Section II and MoM. Excellent agreement is observed for the two
cases. For the rest of calculations presented here the width of the strip is fixed to be 5Ag. Figure
4 is a plot of backscattering as a function of incidence angle. Except at some angles around
€, = 75°, the new uniform solution provides very accurate results. Figures 5 and 6 are plots of
bistatic scattering by the sttip with the same dielectric constant and thickness as the previous
case, for §; = 30° and 9; = 90° {edge-on incidence), respectively. As shown in these figures, the
asymptotic solution produces very accurate results, but some discrepancy is observed at angles
around 75° for edge-on incidence. The final exarnple is an investigation of effect of dielectric
constant. Figure 7 shows a comparison of echo width as a function of the real part of dielectric
constant with a fixed imaginary part of 0.4. The next figure is the echo width as a function of the
imaginary pan of the dielectric constant with a fixed real part of 20. For these simulations the
incidence angle (8;) is fixed to be 30° and the observation point (8,) —30° (forward direction).
The asymptotic solution is again in excellent agreement with MoM.
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Fig. 3. Forward scattering for edge-on
incidence,
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Fig. 5. Bistatic scatiering as a function of
incidence angles for 6; = 30°,
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Fig. 7. Scattering as a function of real part
of dielectric constant.
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Fig. 4. Back
incidence angles,
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Fig. 6. Bistatic scattering as a function of
incidence angles for 8 = 9¢°,
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Fig. 8. Scaliering as a function of imaginary
part of dielectric constant,



