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Abstract
Current high-performance computer systems are

unable to saturate the latest available high-bandwidth
networks such as 10 Gigabit Ethernet. A key obstacle
in achieving 10 gigabits per second is the high over-
head of communication between the CPU and network
interface controller (NIC), which typically resides on a
standard I/O bus with high access latency. Using sev-
eral network-intensive benchmarks, we investigate the
impact of this overhead by analyzing the performance
of hypothetical systems in which the NIC is more
closely coupled to the CPU, including integration on
the CPU die. We find that systems with high-latency
NICs spend a significant amount of time in the device
driver. NIC integration can substantially reduce this
overhead, providing significant throughput benefits
when other CPU processing is not a bottleneck. NIC
integration also enables cache placement of DMA
data. This feature has tremendous benefits when pay-
loads are touched quickly, but potentially can harm
performance in other situations due to cache pollution.

1. Introduction

Networking bandwidth is one of the few technolo-
gies that has outstripped Moore’s Law in recent years.
From 1995 to 2002, the IEEE Ethernet standard
evolved from a top speed of 100 Mbps to 10 Gbps
(10GigE), a hundred-fold improvement, while in the
same period the 18-month doubling rate of Moore’s
Law indicates a mere 25x increase in transistor density
(traditionally correlated with CPU performance). As a
result, the host computer systems at the endpoints of
these high-speed Ethernet connections are no longer
able to keep up with the network data rate.

There are already a number of bandwidth-hungry
applications that can readily make use of 10 Gbps net-
working, such as cluster and grid computing systems
and file servers on local area networks. (Most current
PC systems ship with 1 Gbps Ethernet adapters; only
ten of these are needed to saturate a 10GigE server sys-
tem.) Many emerging technologies such as network-
attached storage (e.g., iSCSI), telepresence-based
remote conferencing, and video streaming will further
increase demand for very high-speed network connec-
tions. For industry to deliver production computer sys-
tems capable of meeting these demands as they
materialize, system designers must begin addressing
this problem right away.

The primary advances in end-host networking per-
formance in the past several years have involved minor
enhancements to the network interface controller
(NIC), allowing it to offload simple tasks from the
CPU such as checksum generation and segmentation of
large transfers. Some portions of industry are pushing
this direction further by offloading much of the TCP
protocol stack to the NIC. However, networking per-
formance is a system-wide issue, involving the I/O
subsystem, memory hierarchy, and CPUs. Attempting
to address this system-wide problem with a point solu-
tion, as these TCP offload engines (TOEs) do, involves
fundamental drawbacks, as will be discussed in
Section 2.

In this paper, we take a system-level view of high-
bandwidth TCP/IP network performance. Using simu-
lation, we analyze the performance of current and
hypothetical future systems under network-intensive
micro- and macro-benchmark workloads. We find that
the key bottleneck in current systems is not protocol
processing itself, but the high latency of communica-
tion between the CPU and the NIC. From a system-
level perspective, this latency can be solved directly by
moving the NIC closer to the CPU, either by placing it
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on a physically closer interconnect or by integrating
directly on die with the CPU.

Once the CPU/NIC communication bottleneck is
alleviated, protocol processing and memory copying
become performance limiters. Although a dedicated
TCP processing engine could help here, we find that
moderate increases in CPU bandwidth, as will be avail-
able in near-future CMP platforms, is adequate to satu-
rate a 10GigE link in several of our benchmarks.

Where this CPU speed increase is not adequate, it
is often due to the CPU stalling while copying data.
Given an on-chip NIC that has access to the last level
of on-chip cache, we can address copying overheads by
placing incoming network data directly in the cache.
This technique can also be used with off-chip NICs if
the CPU cache allows data to be pushed in asynchro-
nously from an external source [12]. Although we
occasionally see higher miss rates due to cache pollu-
tion from this technique, we do not observe any nega-
tive performance effects in our benchmarks. In general,
larger caches and/or faster CPUs increase the likeli-
hood that the processor will touch network data before
it is kicked out of the cache. In contrast, smaller caches
and slower CPUs are less likely to do so, and thus suf-
fer from pollution effects.

Overall, we find that a handful of system-level
architecture changes (closer CPU/NIC coupling,
increased CPU bandwidth, and NIC cache data place-
ment) are sufficient to saturate a 10 Gbps Ethernet in
all but one of our benchmarks. We feel that these
changes represent a far more promising and less radical
path to achieving high-bandwidth networking than the
current industry direction of TCP offload. We identify
more intelligent policies for cache network data place-
ment and more efficient NIC event notification (to
reduce interrupt overhead) as priorities for future work
in this area.

The remainder of the paper begins with a discus-
sion of related work. Options for NIC placement are
investigated in Section 3. We describe our simulation
environment in Section 4 and our benchmarks in
Section 5. Section 6 presents simulation results.
Section 7 covers our conclusions and future work.

2. Related Work

As mentioned in the introduction, much of the
effort in enhancing commercial NICs has focused on
offloading work from the CPU to the NIC. Minor tasks,
such as checksum generation and transmit segmenta-
tion are common in current gigabit Ethernet NICs. TCP
offload engines (TOEs) take the offload concept to its
logical conclusion, moving all TCP/IP processing onto

the NIC [1]. However, there are a number of arguments
against the TOE approach, such as the inability of a
TOE to stay on the general-purpose CPU performance
curve and the difficulty in dealing with bugs in firm-
ware-based TCP code [17]. Offload techniques address
the high cost of CPU/NIC interactions by having the
CPU interact with the NIC less frequently at a higher
semantic level. We take an alternate approach by
directly attacking the NIC/CPU communication over-
head.

Intel claims that TOEs by themselves do not pro-
vide significant performance improvements because
they do not address the overhead of data movement
between the NIC and main memory [8,21]. As a result,
they have recently begun a platform-level attack on I/O
performance with “I/O Acceleration Technology”
(I/OAT) [8,14]. I/OAT includes header splitting, a
hardware copy engine, interrupt moderation, and pro-
tocol stack optimizations. Intel researchers have also
proposed further system-level enhancements. TCP
onloading [21] dedicates a CPU to NIC interaction and
protocol processing. The end result is that other CPUs
are able to communicate with the dedicated CPU at a
lower interaction cost than communicating to the NIC
directly. There is a similarity between this and TOE,
but because this is strictly a kernel optimization, the
protocol processing is still done by the kernel instead
of firmware, and major changes to the protocol stack
are unnecessary. Direct cache access (DCA) [12]
investigates modifying the cache coherence protocol to
allow an I/O device to push data into the CPU’s cache.
Our approach of placing the NIC on the CPU die
directly enables cache placement of NIC data, and we
also find substantial benefits from this optimization.

Closer integration of network interfaces with
CPUs has been a prominent theme of work in the area
of fine-grain massively parallel processors (MPPs).
Henry and Joerg [9] investigated a range of placement
options, including on- and off-chip memory-mapped
NICs and a NIC mapped into the CPU’s register file.
Other research machines with tight CPU/network inte-
gration include *T [20] and the J-Machine [6].
Mukherjee and Hill [18] propose several optimizations
for NICs located on the memory bus that can partici-
pate in cache-coherent memory transactions. Many of
their optimizations could be used with our integrated
NICs as well. We see our future work, in part, as an
attempt to apply some of the ideas from this custom
MPP domain to the more commercially significant area
of TCP/IP networking. Now that TCP/IP over off-the-
shelf 10GigE can provide bandwidth and latency com-
petitive with, and often better than, special-purpose
high-speed interconnects [7], a single CPU device with
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integrated 10GigE support could serve as both a data-
center server and a node in a high-performance clus-
tered MPP.

Integrated NIC/CPU chips targeted at the embed-
ded network appliance market are available (e.g., [3]);
our work differs in its focus on integrating the NIC on
a general-purpose end host, and on performance rather
than cost effectiveness. Reports indicate that the
upcoming Sun Niagara processor, a multithreaded chip
multiprocessor designed for network workloads and
scheduled to ship in 2005, will have multiple integrated
1 Gbps Ethernet interfaces.

3. NIC Placement Options

To investigate the impact of changing the location
of the NIC in the memory hierarchy, we chose a set of
five configurations as shown in Figure 1. The first two
configurations we model are aggressive I/O designs
that we expect to be common in the near future. The
first system, standard PCI Express (STE), has an off-
chip memory controller and a dedicated PCI Express
x4 channel for the 10GigE NIC hanging off an I/O
bridge. The HyperTransport PCI Express (HTE) con-
figuration represents a similar system with an on-chip
memory controller, but with one fewer chips separating
the NIC from the CPU.

The third configuration we model, HyperTransport
direct (HTD), represents a potential design for systems
that implement a high-speed I/O interconnect via
HyperTransport-like channels. This configuration is
similar to attaching the NIC directly to a 6.4GB/s
HyperTransport channel.

The remaining configurations integrate the NIC
onto the CPU die. We look at three on-chip configura-

tions: on-chip memory-bus-attached (OCM), on-chip
cache-attached (OCC), and on-chip split (OCS). OCM
attaches the NIC to the memory bus, on the other side
of the L2 cache from the CPU. This configuration pro-
vides very high bandwidth similar to HTD but even
lower latency due to the elimination of a chip crossing.
OCC goes one step further and attaches the NIC to the
bus between the L1 and L2 caches. This configuration
reduces latency even further, but more importantly
allows incoming NIC DMA data to be written directly
into the L2 cache. OCS is a hybrid of the two configu-
rations, where the NIC is logically attached to both the
cache bus and the memory bus. In this setup, the NIC
splits header from payload data (actually the first cache
block from the remainder of the packet) and places the
former in the cache and the latter in memory. The goal
is to provide low-latency access to the header control
information, which is likely to be processed quickly by
the kernel, without polluting the cache with large data
transfers that may not be referenced as quickly.

We believe the area and complexity required for
this integration are modest. The only required on-chip
components are those which enqueue and dequeue
packet data into and out of the network FIFOs and the
I/O bus interface. The physical layer signalling logic,
or even the bulk of the FIFO buffer space could remain
off chip. Signalling between the on-chip and off-chip
portions of the NIC could use dedicated pins or could
be multiplexed over an I/O channel (e.g., HyperTrans-
port). This setup differs from the HyperTransport-
attached NIC in that CPU/NIC interactions are on-chip,
and only latency-tolerant transfers between on-chip
and off-chip network FIFOs go across the HyperTrans-
port link.

4. Simulator Platform and Configuration

Alternative NIC architectures are often evaluated
by emulation on a programmable NIC or by hardware
prototyping. While these approaches allow modeling
of different NICs in a fixed system architecture, unfor-
tunately they do not lend themselves to modeling a
range of system architectures as we have described in
the previous section. We thus turn to simulation for our
investigation.

Because the bulk of network processing activity
occurs in the OS kernel, network-oriented system
architecture research requires a full-system simulator
capable of running both OS and application code.
Additionally, the simulator must have a reasonably
detailed timing model of the memory and I/O systems
and of the network device. The following sections (4.1-
4.3) describe these aspects of our simulator platform in
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Figure 1. NIC placement options.
Shaded boxes represent different NIC locations
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turn. Section 4.4 discusses the system parameters we
use in this paper.

4.1 The M5 Simulator

Network-intensive applications spend the majority
of their time in OS kernel code—including driver code
to communicate with the NIC, the network stack, and
the code to copy the packets to/from user processes—
rather than user-level application code. Conventional
architectural simulators, which execute only user-level
application code and functionally emulate kernel
behavior, do not provide meaningful results for these
workloads. Of the handful of existing full-system sim-
ulators [16,22,24], none provide detailed network I/O
modeling nor are easily extendable to do so.

As a result, we developed our own simulator,
called M5, to meet our specific needs [2]. M5’s Alpha
ISA CPU timing model has roots in the SimpleScalar
[4] simulator but has been largely rewritten. We added
numerous full-system capabilities including privileged
instructions, virtual/physical address translation, pro-
cessor-specific control registers, and a Compaq Alpha
Tsunami chipset model. SimOS [22] provided a valu-
able reference implementation and was the source of
the Alpha PAL code that M5 executes. We model the
Tsunami platform with enough fidelity to boot unmodi-
fied Linux 2.4 and 2.6 kernels. We used Linux 2.6.8.1
to generate the results for this paper.

We enhanced our detailed CPU timing model to
capture the primary timing impact of system-level
interactions. M5 executes actual Alpha PAL code in
privileged mode to handle traps and interrupts, flushing
the pipeline where appropriate. For memory barrier
instructions, we drain the pipeline and stall until out-
standing accesses have completed. Write barriers pre-
vent reordering in the store buffer. Uncached memory
accesses (e.g. for programmed I/O) are performed only
when the instruction reaches the commit stage and is
known to be on the correct path.

To provide deterministic, repeatable simulation of
network workloads, as well as accurate simulation of
network protocol behavior, M5 models multiple sys-
tems and the network interconnecting them in a single
process. Implementing this capability was simplified
by the object-oriented design of M5—creating another
system requires simply instantiating another set of
objects modeling another CPU, memory, disk, etc.

We have validated M5 against two Compaq Alpha
XP1000s (w/500MHz and 667MHz CPUs). Five of six
benchmark/system combinations have simulated net-
work bandwidth within 15% of the real system. CPU
utilization breakdowns (user, driver, stack, etc.) also

correlate well. This level of accuracy is reasonable
given that we did not try to model that specific plat-
form precisely, but merely tuned our generic cpu,
cache, bus, and memory parameters to match. More
information on the validation of M5 is available [23].

4.2 Memory and I/O System Model

The memory and I/O systems are key determinants
of networking performance. We use a handful of sim-
ple components to construct system models represent-
ing those of Section 3.

To emulate all of the interconnects in the system,
we use a single bus model of configurable width and
clock speed. This model provides a split-transaction
protocol, and supports bus snooping for coherence.
Our DRAM, NIC, and disk controller models incorpo-
rate a single slave interface to this bus model, capable
of variable transaction sizes up to 64 bytes. The cache
model includes a slave interface on the side closer to
the CPU and a master interface on the side further from
the CPU. Note that this model is optimistic for bidirec-
tional point-to-point interconnects such as PCI Express
and HyperTransport, as it assumes that the full bidirec-
tional bandwidth can be exploited instantaneously in
either direction.

We also have a bus bridge model that interfaces
two busses of potentially different bandwidths, for-
warding transactions in both directions using store-
and-forward timing. This model is used for the I/O
bridges (labeled B in Figure 1) and for the memory
controller. In our model the memory controller simply
bridges between two busses (for example, the front-
side bus and the controller/DRAM bus). The DRAM
timing is modeled in the DRAM object itself.

4.3 Ethernet Device Model

Our simulated Ethernet NIC is modeled after the
National Semiconductor DP83820 [19] Gigabit Ether-
net device. The model is sufficiently faithful to support
the off-the-shelf Linux DP8820 device driver. We fix a
bug in the real DP83820 that prevents its DMA engine
from writing to arbitrarily aligned blocks. This com-
mon feature allows the kernel to align buffers based on
packet payloads rather than headers. The model
focuses its detail on the main packet data path and the
system-side I/O interface. Three logical blocks com-
prise the device model: the device itself, the physical
interface, and the link.

The device portion of the model manages device
programming registers, DMA to and from device buff-
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ers, interrupts, and the assembling and buffering of
packet data. The device model fully participates in the
memory system timing, interfacing to the bus model
described in Section 4.2 for both DMA transactions
and programmed I/O requests to device control regis-
ters. DMA transactions are fully coherent with the
cache hierarchy. The device also implements interrupt
moderation (aka interrupt coalescing) to reduce the
interrupt rate. At high bandwidths, interrupting the
CPU on each packet is impractical. We use a fixed-
delay scheme which puts an upper bound on the rate of
common device interrupts at the cost of some addi-
tional latency under light loads. We experimented with
different rates and found that constraining the interval
between interrupts to a minimum of 10µs was reason-
ably effective.

The physical interface model moves data from the
transmit buffer to the link or passes data from the link
to the receive buffer. Since there is no buffering in the
physical interface and it represents negligible delay, its
timing is not modeled.

The Ethernet link models a lossless, full-duplex
link of configurable bandwidth. The latency of a packet
traversing the link is simply determined by dividing the
packet size by that bandwidth. Since we are essentially
modeling a simple wire, only one packet is allowed to
be transmitted in each direction at any given time.

4.4 Memory Latencies

The parameters we used in modeling the configu-
rations of Section 3 are listed in Table 1. We are prima-
rily interested in the relative behavior of these systems,
rather than their absolute performance, so some of
these parameters are approximations. In addition to the

parameters shown, we also add a bridge-dependent
latency penalty for each bus bridge that connects
devices on separate chips. These bridge latencies were
tuned based on measurements taken from real systems
using hardware performance counters and a custom
Linux kernel module.

Table 2 presents timings for devices on three real
machines in six different configurations, reflecting the
different NIC locations that we studied. The “periph-
eral” timing corresponds to our PCIE configuration,
where the device is on a commodity I/O bus with mul-
tiple bus bridges between the device and the CPU. The
“off NB” (north bridge) location is similar to our HTE
configuration, where a standard I/O bus is connected to
the NB directly. The HTD configuration could be real-
ized by integrating the NIC onto the NB (“on NB”). It
is interesting to note that the peripheral and off-NB
latencies in Table 2 have not varied by more than 10%
over several years. Even the on-NB latency is only
reduced by approximately 2x for more than a 3x
change in CPU frequency.

OCM timing is approximated by measuring the
latency to a device integrated on the CPU die. The
Alpha EV6 has no such devices, but both Pentium
chips have an integrated local I/O APIC. These devices
have an access time of 3x-4x more than the on-chip
access time we modeled. However, we believe these
devices were not designed to minimize latency, and
that an integrated NIC could be designed with an
access time closer to that of a cache.

We measured the memory access latencies for our
configurations with an on-chip and off-chip memory
controller. With our memory configurations an on-chip
memory controller has as access latency of 50ns and an
off-chip memory controller has a latency of 65ns. In
both cases our results are similar to published numbers
of 50.9ns and 72.6ns respectively [13].

5. Benchmarks

For this evaluation, we used several standard
benchmarks: netperf [10], a modified SPEC WEB99
[25], and NFS with a Bonnie++ [5] stressor. All bench-

Table 1. Simulated System Parameters

Frequency 4 GHz, 6 GHz, 8 GHz, or 10 GHz

Fetch Bandwidth Up to 4 instructions per cycle

Branch Predictor Hybrid local/global (ala 21264).

Instruction Queue Unified int/fp, 64 entries

Reorder Buffer 128 Entries

Execution BW 4 insts per cycle

L1 Icache/Dcache 128KB, 2-way set assoc., 64B blocks, 16 MSHRs
Inst: 1 cycle hit latency Data: 3 cycle hit latency

L2 Unified Cache 4MB and 16 MB, 8-way set assoc. 64B block size,
25 cycle latency, 40 MSHRs

L1 to L2 64 bytes per CPU cycle

L2 to Mem Ctrlr 4 bytes per CPU cycle

HyperTransport 8 bytes, 800 MHz

Main Memory 65 ns latency for off-chip controller, 50 ns on-chip

Figure 2. Uncached access latencies
latency ± standard deviation (all in ns)

Location Alpha
DP264

Pentium III
933MHz

Pentium 4
3GHz

M5
Simulator

Peripheral 788 ± 40 835 ± 54 803 ± 24 773 ± 8.6
Off NB — 423 ± 49 392 ± 21 381 ± 7.2
On NB 475 ± 26 413 ± 61 216 ± 16 190 ± 2.0
On Die — 132 ± 52 82 ± 3 30 ± 2.9
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marks were simulated in a client-server configuration.
The system under test was modeled with detailed CPU
timing, memory timing, and peripheral device interac-
tion. The other system(s) stressing the system under
test were operated artificially quickly (functionally
modeled with a perfect memory system) so as not to
become the bottleneck. In addition to the simple client-
server setup, we ran the netperf benchmark in a net-
work address translation (NAT) configuration with the
client system accessing the server through a NAT gate-
way, which was the system under test.

Netperf is a simple network throughput and
latency microbenchmark suite developed at Hewlett-
Packard. We focus on two of the many microbench-
marks that are included in netperf: stream, a transmit
benchmark, and maerts, a receive benchmark. In both
of these, the netperf client opens a connection to the
machine running the netperf server and sends or
receives data at the highest rate possible. The bench-
mark itself has a very short inner loop, basically filling
up a buffer and calling the write syscall. This bench-
mark consequently has very little user time, and spends
most of its time in the TCP/IP protocol stack of the ker-
nel or in the idle loop waiting for DMA transactions to
complete. 

SPECWEB99 is a well-known webserver bench-
mark that stresses the performance of a server machine.
Simulated clients generate web requests to form a real-
istic workload for the server, consisting of static and
dynamic GET and POST operations over multiple
HTTP 1.1 connections. Specweb also contains
dynamic ad rotation using cookies and table lookups.
The original benchmark is intended to be tuned to
determine the maximum number of simultaneous con-
nections a server is able to handle. However, iterative
tuning is impractical for our purposes due to the rela-
tive slowdown of our simulated environment. We cre-
ated our own benchmark client that generates Specweb
client requests using the same statistical distribution as
the original clients, but without the throttling. Our ver-
sion thus continuously generates packets until the link
bandwidth is saturated. We use the Apache http server,
version 2.0.52, with a maximum of 100,000 clients and
50 threads per child.

NFS is a ubiquitous network file system from Sun
that enables users to see a distributed file system net-
work locally on their individual machines. Thus, a sim-
ple copy of one file to another location incurs network
traffic. To remove the disk subsystem from this bench-
mark, the system under test (server) was run with a
RAM disk that it exported over NFS while the client
ran Bonnie++, a simple benchmark for testing hard

drive and file system performance. The Bonnie++ tests
we utilized consist of a series of large block writes.

For netperf over NAT, we simply placed another
machine between the server and client to act as a NAT
machine. The NAT machine translates the IP addresses
on the client’s requests from a private network
addresses to its own address, then reverses the transla-
tion on responses. When conducting these experi-
ments, the system under test was the NAT machine.

For all of these experiments, we use the standard
1500 byte maximum transmission unit (MTU) as that
is standard on the Internet today. While many network-
ing papers vary the MTU in their experiments, 1500
bytes is by far the dominant MTU in modern networks
and systems.

The time required for full-system cycle-level sim-
ulation is immense and, in general, is orders of magni-
tude slower than a real system’s performance. Thus
running any benchmark to completion is impractical.
To address this we used a combination of functional
fast-forwarding, warm-up and sampling to obtain the
results herein.

We modified our benchmarks to insert special M5-
defined instructions that cause the simulator to check-
point its state. We use these instructions to take check-
points only after the workload enters its steady state.

From a checkpoint we warm-up the state in the
caches and TLB for 1 billion cycles using a simple
CPU model. After the warm-up is complete we switch
to a detailed cycle-level CPU model and run for
another 200 million cycles. The warm-up period was of
lower effective performance than the detailed simula-
tion so that the TCP protocol could adapt quickly to the
bandwidth change [11].

The results presented in the next section were
composed from a single sample of 200 million cycles
from the above mentioned benchmarks. However, we
did run many of the configurations for an extended
period of time taking as many as 50 samples of 200
million cycles each. These runs show a coefficient of
variation of 5% ± 2.5% for the macrobenchmarks and
under 1% for the microbenchmarks.

6. Results

We first examine the behavior of our simulated
configurations using the netperf microbenchmark,
varying CPU speed and L2 cache size. We then use our
application benchmarks (web, NFS, and NAT) to
explore the performance impact of our system configu-
rations under more realistic workloads.
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6.1 Microbenchmark Results

Figure 3 plots the achieved bandwidth of our TCP
receive microbenchmark across our six system config-
urations, four CPU frequencies (4, 6, 8, and 10 GHz)
and two cache sizes. Although the higher CPU fre-
quencies are not practically achievable, they show the
impact of reducing the CPU bottleneck. In the future,
their comparative performance will likely be achiev-
able through multiprocessing, either through plentiful
coarse-grained connection-level parallelism as is seen
in the macrobenchmarks below or through advance-
ments in protocol stacks that enable the processing of
packets in parallel.

We first note that the STE configuration has no
CPU bottleneck given that an increase in CPU perfor-
mance does not impact bandwidth. It is likely that the
latency between the CPU and the NIC alone accounts
for the majority of the bottleneck given the fact that the
HTE configuration also has nearly flat performance,
albeit at a higher level. Conversely, the integrated NICs
universally provide higher performance at higher CPU
speeds, though their advantage over the direct Hyper-
Transport interface is slight at lower frequencies when
the benchmark is primarily CPU-bound. Comparing
the top and bottom graphs in Figure 3, we see that the

more tightly coupled interfaces also get a larger boost
from larger LLC sizes.

In some situations, the in-cache DMA configura-
tion (OCC) provides higher performance than OCM
and OCS. The explanation for this difference can be
seen in Figure 4, which shows the number of last-level
cache misses per kilobyte of network bandwidth for
these configurations. Because OCM and OCS NICs
write payload data to memory, the CPU will always
miss in the cache when accessing that data. The result
is a minimum of 16 cache misses per kilobyte of data
transferred, as seen in the configurations without cache
placement. Cache placement alone is not a guarantee
that these misses can be alleviated—it is necessary for
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the cache to be large enough to hold the network
receive buffers until the CPU accesses them. In this
case, OCC dramatically reduces the number of cache
misses incurred. Interestingly, this condition is a func-
tion of both the cache size and the CPU speed: a faster
CPU is better able to keep up with the network and
thus requires less buffering. Because our microbench-
mark does not perform any application-level process-
ing, the cache pollution induced by OCC when the
cache is too small does not negatively impact perfor-
mance. We will see a counterexample when we look at
the macrobenchmarks below.

Figure 5 presents the breakdown of CPU utiliza-
tion for the same configurations just described. Clearly,
moving the NIC closer to the CPU drastically reduces
the amount of time spent in the driver, the most domi-
nant bottleneck, as it reduces the latency of accessing
device registers. This translates directly to the higher
bandwidths of Figure 3. However, most cases are still
CPU-bound as the driver cost is replaced by CPU time
in copy due to increased network bandwidth. However,
when OCC is able to eliminate cache misses on net-
work data (only with the 10 GHz CPU on this 4 MB
cache), it drastically reduces the time spent in copy
because the source data is in the cache rather than in
memory. Looking at Figures 3 and 5 together shows
that although some other configurations manage to sat-
urate the network, only OCC at 10GHz does this with
significant CPU capacity remaining to perform other
tasks.

Figure 5 also illustrates a potential pitfall of inte-
gration: over-responsiveness to interrupts. Because the
CPU processes interrupts much more quickly with the
on-chip NIC, it processes fewer packets per interrupt,
resulting in more interrupts and higher interrupt over-
head. It is likely that this issue can be addressed using a
more sophisticated interrupt moderation scheme.

Figure 6 presents the performance, cache, and
CPU utilization results for the TCP transmit
microbenchmark at a 4MB last-level cache size. In this
microbenchmark, the sending CPU does not touch the
payload data. The result is similar to what one might
see in a static-content web server. Since the payload is
not touched, a larger cache does not affect the results.

At lower CPU frequencies, on-chip NICs exhibit a
noticeable performance improvement over direct
HyperTransport; because transmit is interrupt inten-
sive, low-latency access to the NIC control registers
speeds processing. Again, we see that faster processors
increase the utility of in-cache DMA, as they have
fewer outstanding buffers and are thus more likely to
fit them all in the cache. Although all of the configura-

tions have some idle time, with the faster CPUs the on-
chip NICs have a distinct advantage over HTD. When
looking at the cache performance results, DMA data
placement affects only headers and acknowledgment
packets, giving OCC and OCS similar behavior. Both
incur significantly fewer misses than OCM, though this
translates to only a slight decrease in CPU utilization
due to the already low miss rate. (Note the difference in
scale on the misses/KB graphs of Figures 4 and 6.)

The high idle time in STE and HTE is due to poor
overload behavior; note that the link bandwidth is only
a fraction of what HTD and the on-chip interfaces
achieve. We are investigating whether this behavior is
due to our device model, the NS83820 driver, or is
inherent in Linux 2.6.
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Figure 6. TCP transmit microbenchmark results.
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6.2 Macrobenchmark Results

While the microbenchmark results provide valu-
able insight into the fundamental behavior of our con-
figurations, they do not directly indicate how these
configurations will impact real-world performance. To
explore this issue, we ran the three application-level
benchmarks described in Section 5: the Apache web
server, an NFS server, and a NAT gateway. Although
we ran with both 4 MB and 16 MB caches, we present
only the 4 MB results here. For each benchmark, we
show network throughput, L2 cache misses per kilo-
byte of network data transmitted, and a breakdown of
CPU time.

The web server results are shown in Figure 7. In
this test, we can see that the 4 GHz runs are CPU lim-

ited and only very minor performance improvements
are realized by tighter integration of the NIC. On the
other hand, the 10 GHz runs are network bound and
achieve marked improvement in bandwidth when the
NIC is tightly integrated. While a 10 GHz CPU may
never be realized, a web server benchmark is highly
parallel, and this single-cpu 10 GHz system perfor-
mance could likely be achieved by a chip multi-proces-
sor system. Another thing that stands out in these
graphs is that OCC has the opposite effect on
misses/KB when comparing the web server benchmark
to the microbenchmarks. This result is unsurprising
since the working set of this application is non-trivial,
unlike the microbenchmarks. Thus, the OCC configu-
ration pollutes the cache and reduces cache perfor-
mance. In this case, the additional misses appear to
occur to user data not related to networking, as the
fraction of time spent copying does not increase even
though misses/KB increases. Because of the pollution,
OCS’s header-splitting approach achieves the lowest
cache miss rate.

Figure 8 shows NFS server performance for the
various configurations. Again, the 4 GHz runs are
largely CPU bound and do not exhibit significant per-
formance improvement with the on-chip NICs. Here,
the interplay between network buffer sizing and CPU
speeds is clearly illustrated. When looking at the band-
width and misses/KB graphs for the 4 GHz CPU, OCC
clearly pollutes the cache. (Recall that the client is
doing block writes, which stress receive performance
on the server.) However, at 10GHz, despite having the
same cache size, OCC is a boon to performance. The
10GHz machine requires less buffering, resulting in a
smaller working set. As with the microbenchmark,
moving the NIC closer to the CPU drastically reduces
the amount of time spent in the driver since it reduces
the latency of accessing device registers. In addition,
the time spent copying is similarly proportional to the
misses. In nearly all cases, these effects result in
improved bandwidth due to the loosening of the CPU
bottleneck.

Figure 9 shows the NAT gateway performance. In
this case, we are running the TCP receive microbench-
mark between two hosts on either side of the gateway.
The poor performance in the slower configurations is
due to poor behavior under overload conditions.

The misses/KB graph shows that the OCC config-
uration eliminates all misses, while OCS eliminates
misses on only header data, as we expect. For the
10 GHz CPU configuration, OCC and OCS are able to
saturate the network link with CPU cycles to spare.

Overall, tighter integration is clearly a perfor-
mance win in all cases, but the best performing config-
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Figure 7. Web server benchmark.



Appears in PACT 2005 Page 10

uration varies depending on the application. DMAing
directly to the cache can yield huge performance differ-
ences in some circumstances while hurting perfor-
mance in others. The header splitting configuration is a
first step in attempting to mitigate the problem of cache
pollution while achieving some of the benefit, but it is
likely that more can be done to optimize performance.

7. Conclusions and Future Work

We have simulated the performance impact of
tighter coupling between a 10 Gbps Ethernet NIC and
the CPU, and find that this option provides higher
bandwidth and lower latency than current implementa-
tions. Moving the NIC onto the CPU die itself provides
a major opportunity for closer interaction with the on-
chip memory hierarchy. Our results show a dramatic

reduction in the number of off-chip accesses when an
on-chip NIC is allowed to DMA network data directly
into an on-chip cache.

We have begun to investigate the potential for
NIC-based header splitting to selectively DMA only
packet headers into the on-chip cache. Clearly there is
room for more intelligent policies that base network
data placement on the expected latency until the data is
touched by the CPU, predicted perhaps on a per-con-
nection basis. The on-chip cache could also be modi-
fied to handle network data in a FIFO manner [26].

Another future opportunity lies in the interaction
of packet processing and CPU scheduling. We have
observed in this work the increasing impact of inter-
rupts on high-bandwidth streaming. Along with this
benefit comes an associated penalty for coalescing in a
latency-sensitive environment. An on-chip NIC, co-
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Figure 8. NFS server benchmark.
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designed with the CPU, could possibly leverage a hard-
ware thread scheduler to provide low-overhead notifi-
cation, much like in earlier MPP machines [6, 20].

We have also demonstrated a simulation environ-
ment that combines the full-system simulation and
detailed I/O and NIC modeling required to investigate
these options. We have made this environment publicly
available [15] to promote further research in this area.

While a general-purpose CPU is not likely to
replace specialized network processors for core net-
work functions, this trend should allow general-pur-
pose systems to fill a wider variety of networking roles
more efficiently, e.g., VPN endpoints, content-aware
switches, etc. Given the very low latencies integrated
NICs can achieve, we also see opportunity for using
this “general-purpose” part as a node in high-perfor-
mance message-passing supercomputers as well, elimi-
nating the need for specialized high-performance
interconnects in that domain.

In addition to exploring the above issues, our
future work includes expanding our benchmark suite to
include additional macrobenchmarks. We currently
have a VPN application and an iSCSI-based storage
workload under development. A comparison of the
performance of an integrated NIC with a TCP offload
engine (TOE) is highly desirable, but a TOE model and
the associated driver and kernel modifications would
be very complex to implement.
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