
Automated Reasoning and Detection of
Specious Configuration in Large Systems with

Symbolic Execution

Johns Hopkins University

OSDI 2020

Yigong Hu, Gongqi Huang, Peng Huang

1

2

…
!!"#$%%&'%
()*)(&+ ,"-.)+-/&0-1234/
! +5/)26/$%,"1234/7+5/)270&'
+5/)26/$%6&'(58,"1234/7+5/)27&'(58
/$%","1234/7%5'9/$%
/$%65++$+,"1234/75++$+95++
/$%65++$+,"1234/75++$+95++
/$%6:)+'&'%3
/$%60&',"1234/70&'
/$%63/$:64;5+&53,"1234/73/$:9/$%
! /$%64;5+&536'$*6;3&'%6&'(5853
/$'%64;5+26*&15,"<="!(5>);/*?"<=
1)860&'/$%63&@5,"ABCD"!1)8"3&@5">$+"0&'/$%05>$+5"+$//&'%
58E&+56/$%36()23,"F"!0&'/$%>&/53"$/(5+"*G)'"*G&3":&//"05"E;+%5(

!!"H5+7IG+5)("J;>>5+3"K"L1)86M$''5M*&$'3N","*$*)/"E5+7*G+5)("151";3)%5
G+5)(63)MO,"ABCP"!(5>);/*?"QA0&*?"<RAPS"CF0&*?"ABCP
3$+*60;>>5+63&@5,"<D"!(5>);/*?"ADS"/)+%5+"1)2"M);35"E5+>"&33;53
+5)(60;>>5+63&@5,"<D"!(5>);/*?"<ATPS"MG)'%5"&'"&'M+515'*3"$>"FP
+5)(6+'(60;>>5+63&@5,"<D"!(5>);/*?"ABCP
U$&'60;>>5+63&@5,"<D"!(5>);/*?"<ATP
0&'/$%6M)MG563&@5,"CFP"!(5>);/*?"QAPS"3&@5"$>"0;>>5+"*$"G$/("IV"4;5+&53
!!"*$*)/"E5+7*G+5)("0;>>5+"151$+2";3)%5?"TTQA===P","T9CABWJ

!!"X;5+2"Y)MG5
4;5+26M)MG563&@5,"QAD"!%/$0)/"0;>>5+
4;5+26M)MG56/&1&*,"B<AP"!1)8"4;5+2"+53;/*"3&@5"*$"E;*"&'"M)MG5

!!"Y$''5M*&$'3
1)86M$''5M*&$'3,"A==="!1;/*&E/&5+">$+"151$+2";3)%5".&)"E5+7*G+5)("0;>>5+3
1)86M$''5M*65++$+3,"<=="!(5>);/*?"<=
M$'M;++5'*6&'35+*,"A"!(5>);/*?"<S"A?"5')0/5"&'35+*">$+")//"&'3*)'M53
M$''5M*6*&15$;*,"Q="!(5>);/*"7B9<9AA?"BS"ZB9<9AA?"<=
1)86)//$:5(6E)MO5* ,"<ATD"!1)8"3&@5"$>"&'M$1&'%"()*)"*$")//$:

…

Setting Configuration Is Difficult

Logging

Buffer

Query Cache

Connection

• Misconfiguration detection (PeerPressure[OSDI’04], Pcheck[OSDI’16])
o Invalid setting
o Introduced by average users

• Many misconfiguration are valid setting
o 46.3% ∼61.9% of misconfigurations have perfectly legal parameters*
o The effect are hard to predict even for experts
o Cause severe performance issue in production

3

Misconfiguration ≠ Invalid Configuration

For simplicity, we call them specious configuration

*: An Empirical Study on Configuration Errors in Commercial and Open Source Systems. SOSP’11

4

An Example Specious-Configuration Incident

Bob’s website backend

5

An Example Specious-Configuration Incident

SLOW

data partition

6

An Example Specious-Configuration Incident

Why does SQL query use a wrong query plan

This problem typically happens when the estimated
cost of an index scan is too high and doesn't
correctly reflect reality.

…
#QUERY TUNING
enable_bitmapscan = on
enable_hashagg = on
enable_hashjoin = on
enable_indexscan = on
enable_indexonlyscan = on
enable_material = on
enable_mergejoin = on
enable_nestloop = on
enable_parallel_append = on
enable_seqscan = on
enable_sort = on

- Planner Cost Constants
seq_page_cost = 1.0 # measured on an arbitrary scale
random_page_cost = 1.0 # same scale as above
cpu_tuple_cost = 0.01 # same scale as above
cpu_index_tuple_cost = 0.005 # same scale as above
cpu_operator_cost = 0.0025 # same scale as above
parallel_tuple_cost = 0.1 # same scale as above
parallel_setup_cost = 1000.0 # same scale as above
jit_above_cost = 100000 # perform JIT compilation
jit_inline_above_cost = 500000 # inline small functions
jit_optimize_above_cost = 500000 # use expensive JIT optimizations
min_parallel_table_scan_size = 8MB
min_parallel_index_scan_size = 512kB
effective_cache_size = 4GB
…

7

An Example Specious-Configuration Incident
…
#QUERY TUNING
enable_bitmapscan = on
enable_hashagg = on
enable_hashjoin = on
enable_indexscan = on
enable_indexonlyscan = on
enable_material = on
enable_mergejoin = on
enable_nestloop = on
enable_parallel_append = on
enable_seqscan = on
enable_sort = on

- Planner Cost Constants
seq_page_cost = 1.0 # measured on an arbitrary scale
random_page_cost = 1.0 # same scale as above
cpu_tuple_cost = 0.01 # same scale as above
cpu_index_tuple_cost = 0.005 # same scale as above
cpu_operator_cost = 0.0025 # same scale as above
parallel_tuple_cost = 0.1 # same scale as above
parallel_setup_cost = 1000.0 # same scale as above
jit_above_cost = 100000 # perform JIT compilation
jit_inline_above_cost = 500000 # inline small functions
jit_optimize_above_cost = 500000 # use expensive JIT optimizations
min_parallel_table_scan_size = 8MB
min_parallel_index_scan_size = 512kB
effective_cache_size = 4GB
…

8

Specious Configuration Is Prevalent

• Black-box testing is experimental
o Limited code coverage
o Tailored to testing environment, specific configuration and input

• Administrators have more questions:
o What happens if I change this setting from X to Y?
o How would this setting perform with 100 nodes?
o If my workload changes to mostly read-only, is this setting acceptable?
o I plan to upgrade from HDD to SSD, should I update the config?
o …

9

What Is Missing From Current Tool?

10

To tackle specious configuration, we need an
analytical approach to systematically reason

about the performance effect of configuration

S1: Explore performance effect with symbolic execution
o Make configuration and input as one type of symbolic input
o Symbolic explore the system code path with symbolic config & input
o Derive performance impact model for each configuration

S2: Given concrete input, parameters, env info
o Answer admins’ questions
o Violet checker detects specious configuration based on the impact model

11

Our Solution: Violet

v Motivation
v Specious Configuration Code Patterns
v Violet Overview
v Evaluation

12

Outline

13

Code Pattern 1: Costly Operation

• Some expensive operations is executed in
one branch

14

Code Pattern 2: Additional Synchronization

free query cache

• Lead to additional table lock

15

Code Pattern 3: Slow Execution Flow

free query cache

• Lead to slow execution flow

16

Code Pattern 4: Frequent Crossing Threshold

• Costly operation being frequently triggered the costly operation

17

Static Analysis?
• The four patterns are high-level characterizations

o Mapping them to specific code requires a lot of domain knowledge

• Patterns are incomplete
o Other patterns and many variants

• Fundamental limitations
o Infeasible paths
o Performance is hard to be estimated statically

• A general characteristic is…
o Different parameter causes different

execution code path
o Some path is extremely slower than others
o Context-dependency

18

Parameter Affects Execution Flows
Config

Slow path

Input

Detecting specious configuration = finding slow execution
path + deducing triggering condition

19

Symbolic Execution

• Violet uses symbolic execution to find many slow paths
and deduce their triggering conditions

• Advantages
o Analyze system code without being limited by code patterns
o Explored paths are feasible in native execution
o Measure concrete performance from execution

v Motivation
v Specious Configuration Code Patterns
v Violet Overview
v Evaluation

20

Outline

21

Violet Overview

Config dependency file

Violet Hook

System code

Violet
Tracer

S2E

Config 1

Config 2

Trace
Analyzer

Path Comparison

Static
analyzer

22

How to Make Configuration Symbolic

• Making configuration file symbolic
o Path explosion due to the parser

• Observation:
o System usually keeps a dictionary to map configuration to variable
o But we also need variable type, range and default value to make it symbolic

• Our approach:
o Insert a hook to enumerate config variables and make

them symbolic

23

Hooking API

• Insert after parse function

• Iterate all the variable

• Implement make_symbolic
for each variable type

Config dependency file

Violet Hook

System code

Violet
Tracer

S2E

Config 1

Config 2

Trace
Analyzer

Path Comparison

24

Violet Overview

Static
analyzer

• Making all configuration symbolic
o Too many configurations -> path explosion
o Many paths waste time on irrelevant execution
o A lot of path constraints are misleading

25

Which Configuration to Make Symbolic?

26

Making Irrelevant Configuration Symbolic

Target config
Unrelated config
Related config
Costly operation

Wasting long time to reach target configuration

Constraints: autocommit!=0&flush==1&opt_c==1

misleading result

opt_c is irrelevant because it doesn’t impact the autcommit

Only making related configuration symbolic

27

How to Find Related Configuration

• A related config is in some execution flow of target config

• Control dependency
o X is control dependent on Y if X’s execution depends on a test at Y

optx is control dependent on opty
optx,opty are related configurations

Target config
Unrelated config
Related config

28

Relax Control Dependency

• flush is related to autocommit

Relaxing the definition to X’s execution depends
on a test at Y and other parameters

• flush is not control dependent on autocommit
because opt_c is between autocommit and flush

29

Detecting Related Configuration

• Find enabler parameter set

• Find influenced parameter set

• Union both parameter set as
related parameter

Config dependency file

Violet Hook

System code

Violet
Tracer

S2E

Config 1

Config 2

Trace
Analyzer

Path Comparison

30

Violet Overview

Static
analyzer

• Extensive profiling can incur too much overhead to the
symbolic engine and cause inaccuracy of tracing result

• Principles of reducing tracing overhead
o Use Low-level signal if possible
o Defer expensive computation to the end of each path
o Avoid memory related operation

31

Lightweight Symbolic Tracer

32

Trace Latency + Construct Call Chain

call signal

EIP : 0x02
ret : 0x01
time : 10

return signal
EIP : 0x02
ret : 0x01
time : 45

…
EIP : 0x03
ret : 0x02
time : x

Call List

…
EIP : 0x03
ret : 0x02
time : x

Return List

f2(): 35

parent

execution

• Besides latency and call stack, we also trace:
o The # of instructions, system calls, file I/O calls, I/O traffic and etc.
o We call them logical cost metrics

• Some specious configurations are not obvious in latency

• Logical metrics can capture subtle effect and are
independent to the environment

33

Trace Logical Cost Metric

Config dependency file

Violet Hook

System code

Violet
Tracer

S2E

Config 1

Config 2

Trace
Analyzer

Path Comparison

34

Violet Overview

Static
analyzer

Configuration
Costly operation

auto == 0 auto != 0

X

35

Generate Performance Impact Model

Constraints Cost Workload

auto == 0 X SQL == ALL

Configuration
Costly operation

auto == 0 auto != 0

X

fil_flush+X

flush == 1 flush != 1

36

Generate Performance Impact Model

Constraints Cost Workload

auto == 0 X SQL == ALL

auto != 0 & flush == 1 fil_flush+X SQL == INSERT

Configuration
Costly operation

auto == 0 auto != 0

X

Constraints Cost Workload

auto == 0 X SQL == ALL

fil_flush+X

flush == 1 flush != 1

X X

flush == 2 flush != 2

auto != 0 & flush == 1 fil_flush+X SQL == INSERT 37

Generate Performance Impact Model

auto == 0 auto != 0

X

Constraints Cost Workload

auto == 0 X SQL == ALL fil_flush+X

flush == 1 flush != 1

X X

flush == 2 flush != 2auto != 0 & flush == 1 fil_flush+X SQL == INSERT

auto != 0 & flush == 2 X SQL == INSERT

auto != 0 & flush != 2 X SQL == INSERT

38

Generate Performance Impact Model

39

Performance Comparison

• Compare the cost between each pair
Constraints Cost Workload

auto == 0 & flush==1 X SQL == ALL

auto == 0 & flush==2 X SQL == ALL

auto==0 & flush!=2 X SQL == ALL

auto!=0 & flush==1 fil_flush+X SQL == INSERT

auto!=0 & flush==2 X SQL == INSERT

auto!=0 & flush!=2 X SQL == INSERT

40

Performance Comparison

• Compare the cost between each pair
Constraints Cost Workload

auto == 0 & flush==1 X SQL == ALL

auto == 0 & flush==2 X SQL == ALL

auto==0 & flush!=2 X SQL == ALL

auto!=0 & flush==1 fil_flush+X SQL == INSERT

auto!=0 & flush==2 X SQL == INSERT

auto!=0 & flush!=2 X SQL == INSERT

41

Performance Comparison

• Some path comparisons are not very meaningful
Constraints Cost Workload

auto == 0 & flush==1 X SQL == ALL

auto == 0 & flush==2 X SQL == ALL

auto==0 & flush!=2 X SQL == ALL

auto!=0 & flush==1 fil_flush+X SQL == INSERT

auto!=0 & flush==2 X SQL == INSERT

auto!=0 & flush!=2 X SQL == INSERT

path 1: auto == 0 & flush == 2
path 2: auto != 0 & flush == 1

42

“Similar” Path First Comparison

• The paths with the most “similar” constraint compare first
o If a constrain appears in both state, add one to similarity score

• If two paths don’t have common constraint
o Don’t compare them

• Violet components are mostly written in C/C++
o Violet tracer is implemented as S2E plugins
o Violet static analyzer is built on top of LLVM

• S2E [ASPLOS ’11]
o Symbolic execution platform
o Fast, in-vivo

43

Implementation

44

Selective Symbolic Execution

• Complex constraint and path explosion

• Selective symbolic execution
o Silently concretize variable before library call or syscall
o Accurate but not complete
o Relax rules to achieve good completeness

v Motivation
v Specious Configuration Code Patterns
v Violet Overview
v Evaluation

45

Outline

v How effective is Violet in detecting specious
configurations and unknow cases.

v How useful is Violet?

v What is the performance of Violet?

46

Evaluation Questions

Software SLOC # of config Line of Hook
MySQL 1.2M 330 197

PostgreSQL 843K 294 165
Apache 199K 172 158
Squid 178K 327 96

47

Experiment Setup

• Evaluated systems
o MySQL, PostgreSQL, Apache, Squid

• The manual effort to add hook is small

48

17 Specious Configurations
Application Configuration Name Data Type Detect

MySQL autocommit Boolean √

MySQL query_cache_wlock_invalidate Boolean √

MySQL general_log Boolean √

MySQL query_cache_type Enumeration √

MySQL sync_binlog Integer √

MySQL innodb_log_buffer_size Integer √

PostgreSQL wal_sync_method Enumeration √

PostgreSQL archive_mode Enumeration √

PostgreSQL max_wal_size Integer √

PostgreSQL checkpoint_completion_target Float √

PostgreSQL bgwriter_lru_multiplier Float √

Apache HostNamelookup Enumberation √

Apache Deny/Domain Enum/String √

Apache MaxKeepAliveRequests Integer ×

Apache KeepAliveTineOut Integer ×

Squid Cache String √

Squid Buffered_logs Integer √

49

Discover New Specious Configuration
Specious configuration is 1) the setting whose default value causes

performance regression; 2) some performance impact is not documented
Application Configuration Name Performance Impact

MySQL optimizer_search_depth Default cause would cause bad performance for some join query

MySQL concurrent_insert Enable it would cause bad performance for read workload

PostgreSQL vacuum_cost_delay Default value is significantly worse than low values for write workload

PostgreSQL archive_timeout Small values cause performance penalties

PostgreSQL random_page_cost Value larger than 1.2 cause bad perf on SSD for join queries

PostgreSQL log_statement Setting mod cause bad perf for write workload when synchromous_commit is off

PostgreSQL parallel_setup_cost A higher value would avoid unnecessary parallelism

PostgreSQL parallel_leader_participation Enabling it can cause select join query to be slow

Squid ipcache_size The default value is relatively small and may cause performance reduction

Squid cache_log Enable cachelog with higher debug_option would cause extra I/O

Squid store_objects_per_bucket Decrease the setting would short the search time

8 new cases are confirmed by developers

50

Coverage Experiment for Violet

0

200

400

600

800

1000

1200

MySQL PostgreSQL Apache Squid Total

N
um

be
r o

f c
on

fig
s

Analyzed Configs Total Configs

51.2% 71.4%

29.6%

53.3%

53.9%

51

How Fast Is Violet

MySQL PostgreSQL Apache Squid

An
al

ys
is

Ti
m

e
(s

ec
on

ds
)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

206 117

1171

554

52

Related Work

• Misconfiguration Detection
o Pcheck[OSDI’16], LearnConf[Eurosys’20], PeerPressure[OSDI’04],

EnCore[ASPLOS’14]

• Misconfiguration Diagnosis
o ConfAid[OSDI’10], X-ray[OSDI’12]

• Performance Tuning
o Starfish [CIDR’11], Strider [LISA’03],SmartConf[ASPLOS’18]

Proper Configuration MisConfiguration

Invalid

Suboptimal config Specious Config

optimal Config

53

1. Detecting specious configuration is a difficult task

2. Need to systematically reason about the performance
effect of configuration from source code

3. Violet – an analytical approach to detect specious
configuration in large system by symbolic execution
4. Detect 15 known specious configuration and 11 new cases

https://github.com/OrderLab/violet

Conclusion

https://github.com/OrderLab/violet

54

Thank you!

Contact Information: hyigong1@jhu.edu

