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Setting Configuration Is Difficult

Logging

Buffer

Query Cache

Connection



• Misconfiguration detection (PeerPressure[OSDI’04], Pcheck[OSDI’16])
o Invalid setting
o Introduced by average users

• Many misconfiguration are valid setting
o 46.3% ∼61.9% of misconfigurations have perfectly legal parameters*
o The effect are hard to predict even for experts
o Cause severe performance issue in production
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Misconfiguration ≠ Invalid Configuration

For simplicity, we call them specious configuration

*: An Empirical Study on Configuration Errors in Commercial and Open Source Systems. SOSP’11
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An Example Specious-Configuration Incident

Bob’s website backend
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An Example Specious-Configuration Incident

SLOW

data partition
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An Example Specious-Configuration Incident

Why does SQL query use a wrong query plan

This problem typically happens when the estimated 
cost of an index scan is too high and doesn't 
correctly reflect reality.

…
#QUERY TUNING
enable_bitmapscan = on
enable_hashagg = on
enable_hashjoin = on
enable_indexscan = on
enable_indexonlyscan = on
enable_material = on
enable_mergejoin = on
enable_nestloop = on
enable_parallel_append = on
enable_seqscan = on
enable_sort = on

# - Planner Cost Constants 
seq_page_cost = 1.0 # measured on an arbitrary scale
random_page_cost = 1.0 # same scale as above
cpu_tuple_cost = 0.01 # same scale as above 
cpu_index_tuple_cost = 0.005                         # same scale as above 
cpu_operator_cost = 0.0025 # same scale as above 
parallel_tuple_cost = 0.1 # same scale as above 
parallel_setup_cost = 1000.0                            # same scale as above
jit_above_cost = 100000 # perform JIT compilation 
jit_inline_above_cost = 500000 # inline small functions 
jit_optimize_above_cost = 500000                   # use expensive JIT optimizations 
min_parallel_table_scan_size = 8MB   
min_parallel_index_scan_size = 512kB
effective_cache_size = 4GB
…
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An Example Specious-Configuration Incident
…
#QUERY TUNING
enable_bitmapscan = on
enable_hashagg = on
enable_hashjoin = on
enable_indexscan = on
enable_indexonlyscan = on
enable_material = on
enable_mergejoin = on
enable_nestloop = on
enable_parallel_append = on
enable_seqscan = on
enable_sort = on

# - Planner Cost Constants 
seq_page_cost = 1.0 # measured on an arbitrary scale
random_page_cost = 1.0 # same scale as above
cpu_tuple_cost = 0.01 # same scale as above 
cpu_index_tuple_cost = 0.005                         # same scale as above 
cpu_operator_cost = 0.0025 # same scale as above 
parallel_tuple_cost = 0.1 # same scale as above 
parallel_setup_cost = 1000.0                            # same scale as above
jit_above_cost = 100000 # perform JIT compilation 
jit_inline_above_cost = 500000 # inline small functions 
jit_optimize_above_cost = 500000                   # use expensive JIT optimizations 
min_parallel_table_scan_size = 8MB   
min_parallel_index_scan_size = 512kB
effective_cache_size = 4GB
…
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Specious Configuration Is Prevalent



• Black-box testing is experimental
o Limited code coverage
o Tailored to testing environment, specific configuration and input

• Administrators have more questions:
o What happens if I change this setting from X to Y?
o How would this setting perform with 100 nodes?
o If my workload changes to mostly read-only, is this setting acceptable?
o I plan to upgrade from HDD to SSD, should I update the config?
o …
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What Is Missing From Current Tool?
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To tackle specious configuration, we need an 
analytical approach to systematically reason 

about the performance effect of configuration



S1: Explore performance effect with symbolic execution
o Make configuration and input as one type of symbolic input 
o Symbolic explore the system code path with symbolic config & input
o Derive performance impact model for each configuration

S2: Given concrete input, parameters, env info
o Answer admins’ questions
o Violet checker detects specious configuration based on the impact model

11

Our Solution: Violet



v Motivation 
v Specious Configuration Code Patterns
v Violet Overview
v Evaluation 
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Outline
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Code Pattern 1: Costly Operation

• Some expensive operations is executed in 
one branch
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Code Pattern 2: Additional Synchronization

free query cache

• Lead to additional table lock
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Code Pattern 3: Slow Execution Flow

free query cache

• Lead to slow execution flow
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Code Pattern 4: Frequent Crossing Threshold

• Costly operation being frequently triggered the costly operation 
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Static Analysis?
• The four patterns are high-level characterizations

o Mapping them to specific code requires a lot of domain knowledge

• Patterns are incomplete
o Other patterns and many variants

• Fundamental limitations
o Infeasible paths
o Performance is hard to be estimated statically



• A general characteristic is…
o Different parameter causes different 

execution code path
o Some path is extremely slower than others
o Context-dependency

18

Parameter Affects Execution Flows 
Config

Slow path

Input

Detecting specious configuration = finding slow execution 
path + deducing triggering condition
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Symbolic Execution

• Violet uses symbolic execution to find many slow paths 
and deduce their triggering conditions

• Advantages
o Analyze system code without being limited by code patterns
o Explored paths are feasible in native execution
o Measure concrete performance from execution



v Motivation 
v Specious Configuration Code Patterns
v Violet Overview
v Evaluation 
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Outline
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Violet Overview

Config dependency file

Violet Hook

System code

Violet 
Tracer

S2E

Config 1

Config 2

Trace
Analyzer

Path Comparison

Static 
analyzer
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How to Make Configuration Symbolic

• Making configuration file symbolic
o Path explosion due to the parser 

• Observation: 
o System usually keeps a dictionary to map configuration to variable
o But we also need variable type, range and default value to make it symbolic

• Our approach:
o Insert a hook to enumerate config variables and make 

them symbolic
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Hooking API

• Insert after parse function

• Iterate all the variable

• Implement make_symbolic
for each variable type



Config dependency file

Violet Hook

System code

Violet 
Tracer

S2E

Config 1

Config 2

Trace
Analyzer

Path Comparison

24

Violet Overview

Static 
analyzer



• Making all configuration symbolic
o Too many configurations -> path explosion
o Many paths waste time on irrelevant execution
o A lot of path constraints are misleading 

25

Which Configuration to Make Symbolic?
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Making Irrelevant Configuration Symbolic

Target config
Unrelated config
Related config
Costly operation

Wasting long time to reach target configuration 

Constraints: autocommit!=0&flush==1&opt_c==1

misleading result

opt_c is irrelevant because it doesn’t impact the autcommit

Only making related configuration symbolic
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How to Find Related Configuration

• A related config is in some execution flow of target config

• Control dependency
o X is control dependent on Y if X’s execution depends on a test at Y

optx is control dependent on opty
optx,opty are related configurations 



Target config
Unrelated config
Related config
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Relax Control Dependency

• flush is related to autocommit

Relaxing the definition to X’s execution depends 
on a test at Y and other parameters

• flush is not control dependent on autocommit
because opt_c is between autocommit and flush
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Detecting Related Configuration 

• Find enabler parameter set

• Find influenced parameter set

• Union both parameter set as 
related parameter



Config dependency file

Violet Hook

System code

Violet 
Tracer

S2E

Config 1

Config 2

Trace
Analyzer

Path Comparison
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Violet Overview

Static 
analyzer



• Extensive profiling can incur too much overhead to the 
symbolic engine and cause inaccuracy of tracing result

• Principles of reducing tracing overhead
o Use Low-level signal if possible
o Defer expensive computation to the end of each path 
o Avoid memory related operation 

31

Lightweight Symbolic Tracer
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Trace Latency + Construct Call Chain

call signal

EIP : 0x02
ret : 0x01 
time : 10

return signal
EIP : 0x02
ret : 0x01 
time : 45

…
EIP : 0x03
ret : 0x02 
time : x

Call List

…
EIP : 0x03
ret : 0x02 
time : x

Return List

f2(): 35

parent

execution



• Besides latency and call stack, we also trace: 
o The # of instructions, system calls, file I/O calls, I/O traffic and etc.
o We call them logical cost metrics

• Some specious configurations are not obvious in latency

• Logical metrics can capture subtle effect and are 
independent to the environment

33

Trace Logical Cost Metric



Config dependency file

Violet Hook

System code

Violet 
Tracer

S2E

Config 1

Config 2

Trace
Analyzer

Path Comparison
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Violet Overview

Static 
analyzer



Configuration
Costly operation

auto == 0 auto != 0

X

35

Generate Performance Impact Model

Constraints Cost Workload

auto == 0 X SQL == ALL



Configuration
Costly operation

auto == 0 auto != 0

X

fil_flush+X

flush == 1 flush != 1

36

Generate Performance Impact Model

Constraints Cost Workload

auto == 0 X SQL == ALL

auto != 0 & flush == 1 fil_flush+X SQL == INSERT



Configuration
Costly operation

auto == 0 auto != 0

X

Constraints Cost Workload

auto == 0 X SQL == ALL

fil_flush+X

flush == 1 flush != 1

X X

flush == 2 flush != 2

auto != 0 & flush == 1 fil_flush+X SQL == INSERT 37

Generate Performance Impact Model



auto == 0 auto != 0

X

Constraints Cost Workload

auto == 0 X SQL == ALL fil_flush+X

flush == 1 flush != 1

X X

flush == 2 flush != 2auto != 0 & flush == 1 fil_flush+X SQL == INSERT

auto != 0 & flush == 2 X SQL == INSERT

auto != 0 & flush != 2 X SQL == INSERT

38

Generate Performance Impact Model
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Performance Comparison

• Compare the cost between each pair 
Constraints Cost Workload

auto == 0 & flush==1 X SQL == ALL

auto == 0 & flush==2 X SQL == ALL

auto==0 & flush!=2 X SQL == ALL

auto!=0 & flush==1 fil_flush+X SQL == INSERT

auto!=0 & flush==2 X SQL == INSERT

auto!=0 & flush!=2 X SQL == INSERT
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Performance Comparison

• Compare the cost between each pair 
Constraints Cost Workload

auto == 0 & flush==1 X SQL == ALL

auto == 0 & flush==2 X SQL == ALL

auto==0 & flush!=2 X SQL == ALL

auto!=0 & flush==1 fil_flush+X SQL == INSERT

auto!=0 & flush==2 X SQL == INSERT

auto!=0 & flush!=2 X SQL == INSERT
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Performance Comparison

• Some path comparisons are not very meaningful
Constraints Cost Workload

auto == 0 & flush==1 X SQL == ALL

auto == 0 & flush==2 X SQL == ALL

auto==0 & flush!=2 X SQL == ALL

auto!=0 & flush==1 fil_flush+X SQL == INSERT

auto!=0 & flush==2 X SQL == INSERT

auto!=0 & flush!=2 X SQL == INSERT

path 1: auto == 0 & flush == 2
path 2: auto != 0 & flush == 1
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“Similar” Path First Comparison

• The paths with the most “similar” constraint compare first
o If a constrain appears in both state, add one to similarity score

• If two paths don’t have common constraint
o Don’t compare them



• Violet components are mostly written in C/C++ 
o Violet tracer is implemented as S2E plugins
o Violet static analyzer is built on top of LLVM

• S2E [ASPLOS ’11]
o Symbolic execution platform
o Fast, in-vivo

43

Implementation
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Selective Symbolic Execution

• Complex constraint and path explosion

• Selective symbolic execution
o Silently concretize variable before library call or syscall
o Accurate but not complete
o Relax rules to achieve good completeness



v Motivation 
v Specious Configuration Code Patterns
v Violet Overview
v Evaluation 
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Outline



v How effective is Violet in detecting specious 
configurations and unknow cases.

v How useful is Violet?

v What is the performance of Violet?

46

Evaluation Questions



Software SLOC # of config Line of Hook
MySQL 1.2M 330 197

PostgreSQL 843K 294 165
Apache 199K 172 158
Squid 178K 327 96

47

Experiment Setup

• Evaluated systems
o MySQL, PostgreSQL, Apache, Squid

• The manual effort to add hook is small
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17 Specious Configurations
Application Configuration Name Data Type Detect

MySQL autocommit Boolean √

MySQL query_cache_wlock_invalidate Boolean √

MySQL general_log Boolean √

MySQL query_cache_type Enumeration √

MySQL sync_binlog Integer √

MySQL innodb_log_buffer_size Integer √

PostgreSQL wal_sync_method Enumeration √

PostgreSQL archive_mode Enumeration √

PostgreSQL max_wal_size Integer √

PostgreSQL checkpoint_completion_target Float √

PostgreSQL bgwriter_lru_multiplier Float √

Apache HostNamelookup Enumberation √

Apache Deny/Domain Enum/String √

Apache MaxKeepAliveRequests Integer ×

Apache KeepAliveTineOut Integer ×

Squid Cache String √

Squid Buffered_logs Integer √
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Discover New Specious Configuration
Specious configuration is 1) the setting whose default value causes 

performance regression; 2) some performance impact is not documented
Application Configuration Name Performance Impact

MySQL optimizer_search_depth Default cause would cause bad performance for some join query

MySQL concurrent_insert Enable it would cause bad performance for read workload

PostgreSQL vacuum_cost_delay Default value is significantly worse than low values for write workload

PostgreSQL archive_timeout Small values cause performance penalties

PostgreSQL random_page_cost Value larger than 1.2 cause bad perf on SSD for join queries

PostgreSQL log_statement Setting mod cause bad perf for write workload when synchromous_commit is off

PostgreSQL parallel_setup_cost A higher value would avoid unnecessary parallelism 

PostgreSQL parallel_leader_participation Enabling it can cause select join query to be slow

Squid ipcache_size The default value is relatively small and may cause performance reduction

Squid cache_log Enable cachelog with higher debug_option would cause extra I/O

Squid store_objects_per_bucket Decrease the setting would short the search time

8 new cases are confirmed by developers
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Coverage Experiment for Violet
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How Fast Is Violet
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Related Work

• Misconfiguration Detection
o Pcheck[OSDI’16], LearnConf[Eurosys’20], PeerPressure[OSDI’04],

EnCore[ASPLOS’14]

• Misconfiguration Diagnosis
o ConfAid[OSDI’10], X-ray[OSDI’12] 

• Performance Tuning
o Starfish [CIDR’11], Strider [LISA’03],SmartConf[ASPLOS’18]

Proper Configuration MisConfiguration

Invalid 

Suboptimal config Specious Config

optimal Config
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1. Detecting specious configuration is a difficult task

2. Need to systematically reason about the performance 
effect of configuration from source code

3. Violet – an analytical approach to detect specious 
configuration in large system by symbolic execution
4. Detect 15 known specious configuration and 11 new cases

https://github.com/OrderLab/violet

Conclusion

https://github.com/OrderLab/violet
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Thank you!

Contact Information: hyigong1@jhu.edu


