

TrainVerify

Equivalence-Based Verification for Distributed LLM Training

Yunchi Lu^{1,2}, Youshan Miao², Cheng Tan^{3,2}, Peng Huang¹, Yi Zhu², Xian Zhang², Fan Yang²

¹University of Michigan

²Microsoft Reseach Asia

³Northeastern University

LLM training is costly

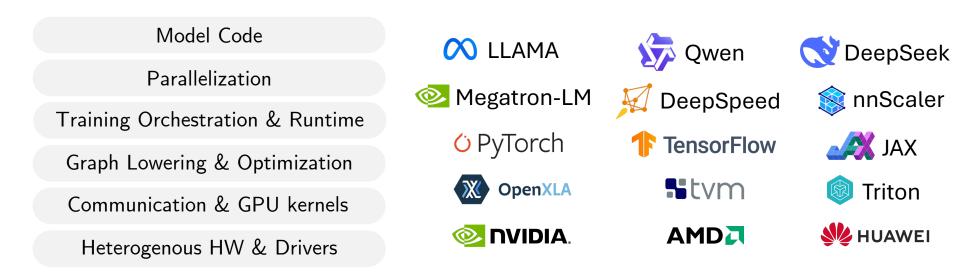
LLM training requires enormous resources → distributed training is **a must**

"Arms race" for larger models \rightarrow more resource-intensive training

‰ Model	Training Scale	Time	(§) Cost
Llama3	up to 16K H100 GPUs	~ 3 months	~ \$100 M
DeepSeek-V3	2K H100 GPUs	~ 2 months	~ \$6 M
PaLM	6K v4 TPUs	~ 3 months	~ \$20 M

Distributed training is notoriously error-prone

Complex training stack



More than millions of lines of Python / C / CUDA code

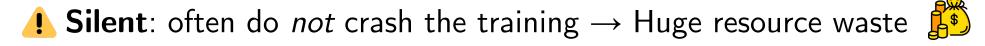
Complexity \rightarrow **!** distributed training is **error-prone**

Parallelization bugs

A major class of bugs that is *most elusive and costly*

- Parallelization Bugs only surface at distributed settings
- wrong tensor/op partitioning; misused comm collectives; faulty scheduling; ...

Jeopardize the **correctness** of distributed training



Example: a mysterious bug in Megatron-LM

Don't blame it!

[BUG] Incorrect loss scaling in context parallel code logic

- Multi-device: Triggered when multiple GPUs are involved
- Root Cause: Incorrect loss scaling factor across *multiple rounds* of tensor synchronization
- Debug: Diagnosis took more than 10 days of combined efforts
- Hard to discover: Bug is introduced over 8 months earlier

Many models were trained without anyone realizing it.

Finding from our study

Cause	Megatron-LM	DeepSpeed	nnScaler
tensor / op partitioning	16	18	19
scheduling	4	1	4
communication	8	13	5
Total	26	28	25

All state-of-the-art distributed training frameworks encounter parallelization bugs in nearly every aspect of their workflow

Goal and research questions

Given the high stakes, can we **formally verify** that the parallelization logic is correct **before** distributed training starts?

While *supporting* existing systems with *moderate* verification efforts?

Parallel training systems: complex stack, diverse vendors, update rapidly

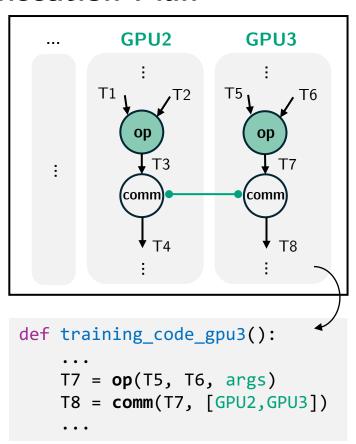
- Impractical to verify end-to-end training
- Prohibitive efforts to rewrite *correct-by-construction* systems

Key Insight

Principled parallelization frameworks have a well-defined Execution Plan

- Typically structured as a dataflow graph (DFG)
- Instantiated and transformed from logical (singledevice) model → captures parallelization logic
- Once an execution plan is fixed, it is used
 for driving the training
- Parallelization correctness can be reasoned about at the level of Execution Plans.

Cleaner and more **structured** → tractable verification



Contributions

Propose an Execplan-based approach to symbolically verify parallelization correctness

- Introduce <u>verifiability</u> into complex LLM training system
- A tool *TrainVerify* that makes this approach practical and **scalable**

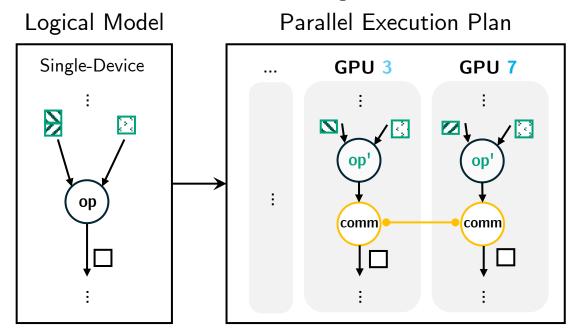
Trade-off: focused scope to make verification tractable

- Only target correctness of parallelization logic
- Not other types of bugs (buffer management, GPU kernel implementation, ...)

Parallelization: Logical Model → Execplan

Parallelizing a model:

- partition tensors and operations
- assign to devices
- synchronize states
- schedule execution order

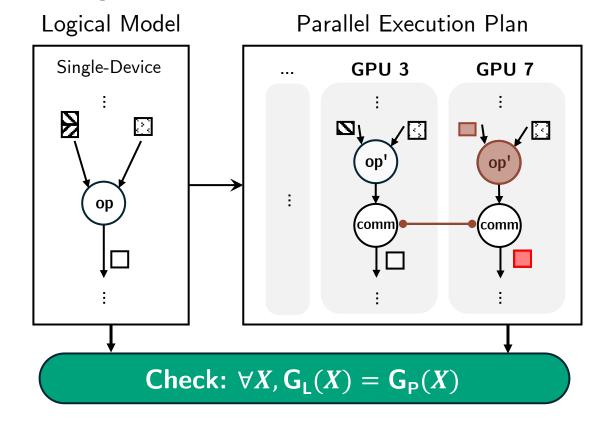


Verify Equivalence for Execplan

Parallelizing a model:

- partition tensors and operations
- assign to devices
- *synchronize* states
- schedule execution order

Buggy parallelization



the execution plan diverges from the logical definition of the model

Checking Parallelization Equivalence is essential for eliminating parallelization bugs

Verify Equivalence for Execplan Symbolically

- Deep learning relies on floating point computation → numerical drift
- Value-based equivalence comparison is compromised
- Conventional differential testing subject to many false alarms

```
# Device = CPU
(1e16 + (-1e16)) + 1 = 1.0
1e16 +((-1e16) + 1)= 0.0
```

non-associative of FP numbers

```
# Device = GPU
out1 = MatrixMultiply(A[:1,], B)
out2 = MatrixMultiply(A, B)[:1,]
Max(|out1-out2|) → 1669.2500
```

batch non-invariance

False alarm for correct / equivalent parallelization logic

• Factors that *amplify* numerical drift: change in computation order, parallelization, diverse GPU kernel implementation, mixed-precision training

Challenges

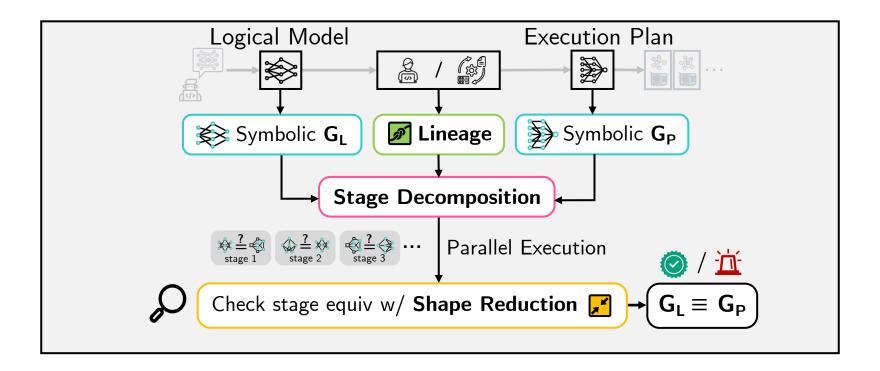
Symbolically verify parallelization equivalence for execution plans

What is the representation to carry out the equivalence checking?

How to scale verification to large DNNs that have hundreds of billions of parameters?

Overview of TrainVerify

Propose symbolic dataflow graph and lineage to carry out verification Achieve scalability through stage-parallel and shape-reduction designs

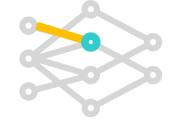




Symbolic Data Flow Graph (sDFG)

- * sDFG: Constructed upon DFG of execution plans
 - 1. Preserves the same graph structure
 - 2. PyTorch tensors → symbolic tensors
 - 3. PyTorch operators \rightarrow rewritten operators supporting symbolic tensors
 - **Tensor as one symbol?

```
z3.Real z3.Real z3.Real numpy.ndarray
Elements as symbols!
```



def symbolic_matmul(A,B):
 return A @ B

We can construct algebraic expressions for model outputs.

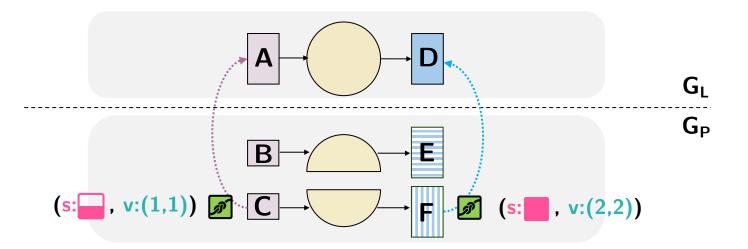
Lineage: Bridge between G_L and G_P

Crucial data structure encoding tensor mapping and partition semantics

: SubTensorID From : FullTensorID SliceMap: List[Slice] ValueMap: (VID, Count)

Similar Concept in multiple sys

- vTensor-pTensor in nnScaler
- DTensor in PyTorch



Lineage: Bridge between G_L and G_P

Crucial data structure encoding tensor mapping and partition semantics

: SubTensorID From

: FullTensorID

SliceMap: List[Slice]

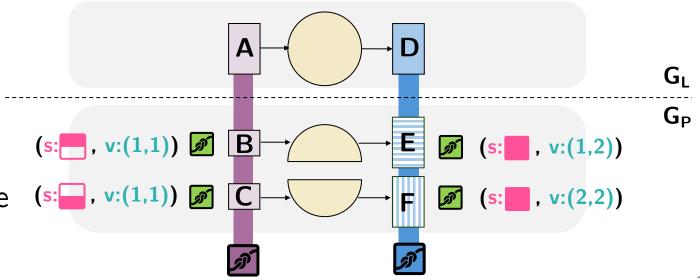
ValueMap: (VID, Count)

Tensor IDs follows SSA

Lineage \Rightarrow expressions

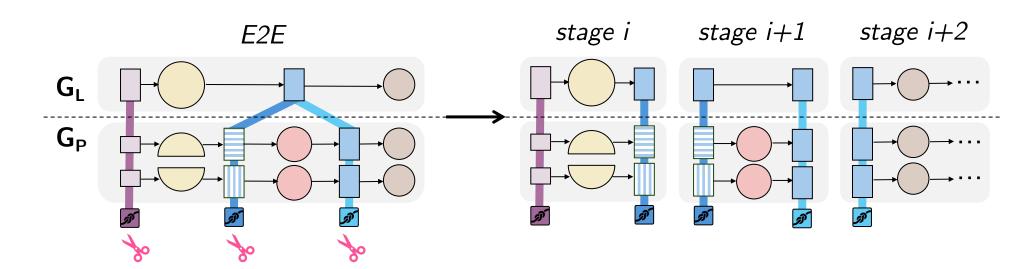
$$D = E + F$$

Spec of parallelization equivalence (s: , v:(1,1))



Stage Decomposition guided by lineage

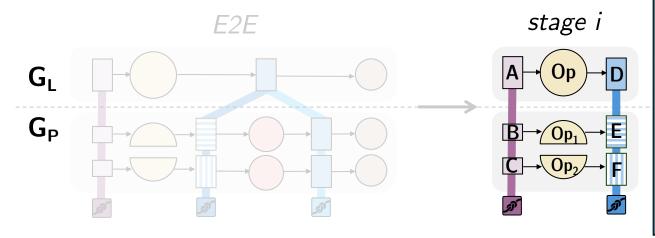
- Extremely deep architectures of LLMs
 - Lengthy & nested expressions
 - Intractable complexity: solver unknown / out of memory
- \bigcirc Divide & Conquer: E2E verification \rightarrow smaller, tractable stages



Verifying a single stage

Each stage:

 Carry lineage for input / output tensors as boundaries



Verify equivalence for a stage

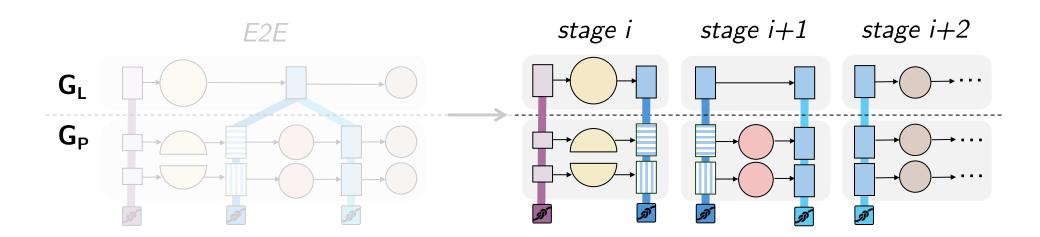
```
Check
 output equivalence
   D == E + F
 is AlwaysTrue
Given
 input Equivalence
  A == concat([B,C],axis=0)
 and operations
   D \leftarrow Op(A)
   F \leftarrow Op_2(C)
```

Verifying all stages

Independently verfiable; executed in parallel

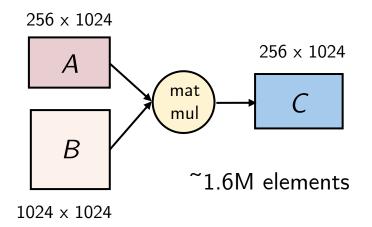
 \bigcirc All stages pass \Rightarrow **End to end equivalence** between G_{l} and G_{p}

 \triangle A failed stage \Rightarrow Localized equivalence violation



Shape Reduction

- \bigcirc Original shape \rightarrow Too many elements
 - Tensors with symbolic real as elements



Leverage **repetition** in DNN operators

Same operation applied repeatedly across multiple sub-tensors

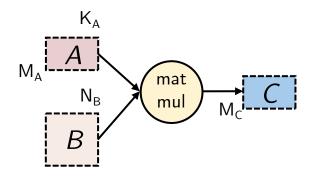
$$\begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix} \times \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix} = \begin{bmatrix} c_{1,1} & c_{1,2} & c_{1,3} \\ c_{2,1} & c_{2,2} & c_{2,3} \\ c_{3,1} & c_{3,2} & c_{3,3} \end{bmatrix}$$

$$c_{1,1} = a_{1,1} \cdot b_{1,1} + a_{1,2} \cdot b_{2,1} + a_{1,3} \cdot b_{3,1}$$

$$c_{2,2} = a_{2,1} \cdot b_{1,2} + a_{2,2} \cdot b_{2,2} + a_{2,3} \cdot b_{3,2}$$

Shape Reduction

- Reduce redundancy with shape reduction
 - Verify equivalence on the same sDFGs with tensor shapes reduced

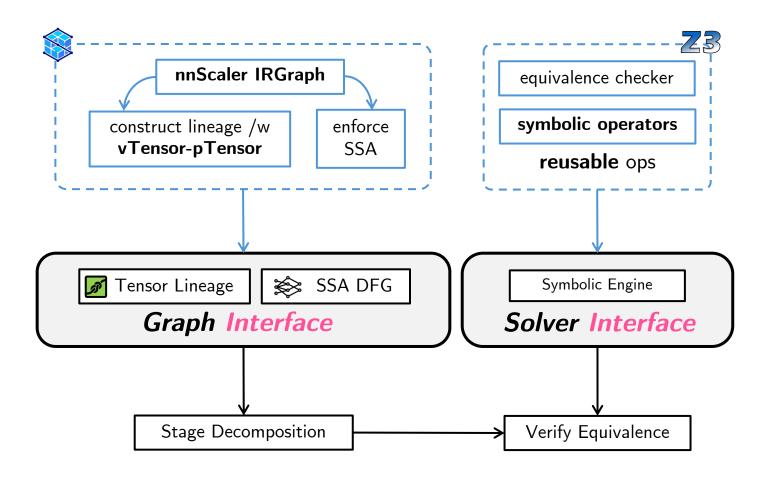


Preserve structural and functional properties

Following shape alignment & operator intactness constraints

Verified equivalence of shape-reduced models faithfully extends to the original

Implementation w/ Modular Design



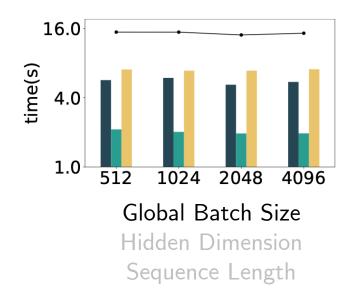
Verify Large-Scale LLM Parallelization

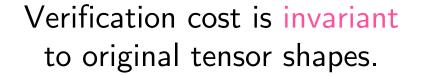
Verification Setup: **single** machine with a 32-core CPU and 1.3 TB memory

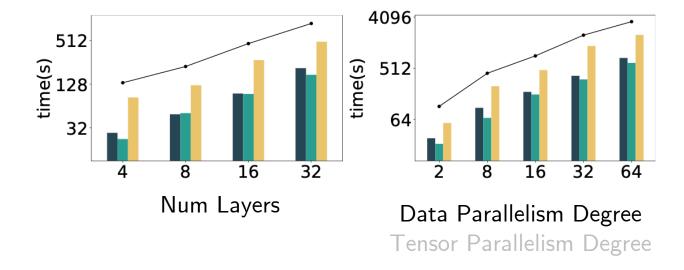
ID	Model	Size	GPUs	Time
L1	Llama3	8B	512	0.2h
L2		70B	512	2.4h
L3		405B	8192	8.0h
D1	DeepSeek-V3	16B	128	0.4h
D2		236B	512	2.4h
D3		671B	2048	9.0h

- TrainVerify scales to the largest trainings
- Can run asynchronously alongside training

Scalability Trends



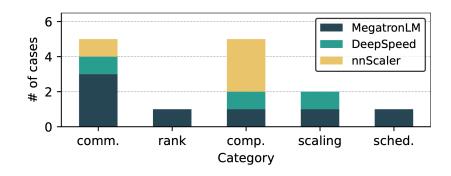




Verification cost is linear to layers and parallelization degrees.

Eliminate Broad Categories of Bugs

Successfully detect reproduced parallelization bugs



Expose *new* bugs

- C1: Sharding a non-partitionable dimension
- C2: Dangling tensors in nnScaler IRGraph
- Temporal Contraction of tensor SSA in transformation

TrainVerify

Symbolic DFG

Tensor Lineage

IR

Correctness

Distributed LLM Training

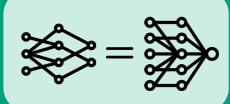
Scope: Model Parallelization

Efficient Checking

Stage Decomposition

Shape Reduction

Parallelization Equivalence



Execution Plans

https://github.com/verify-llm/TrainVerify

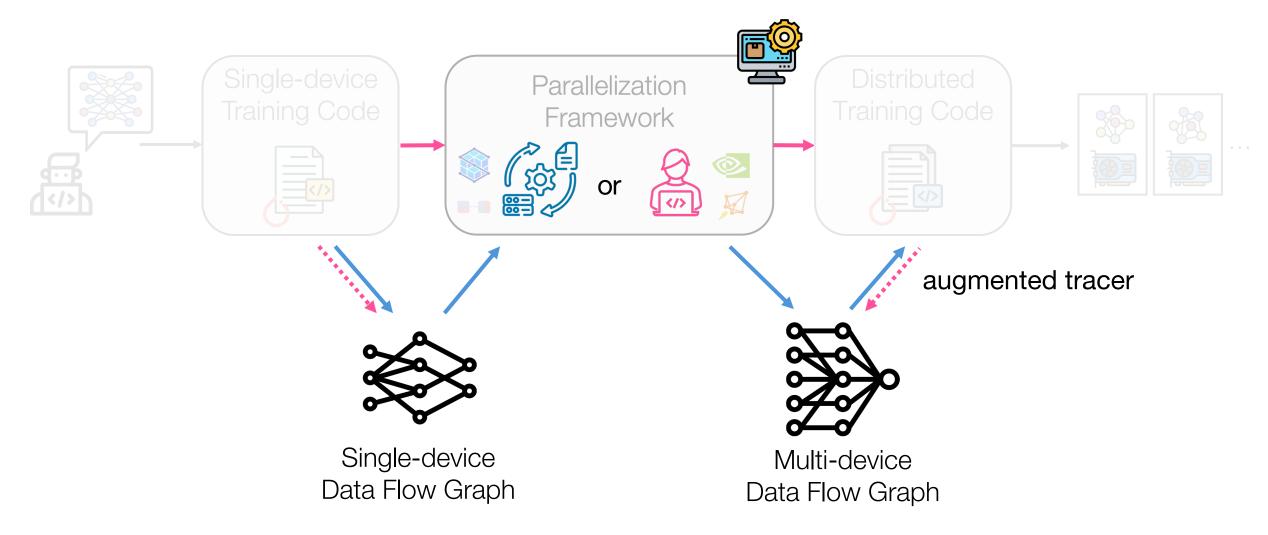
Scalable

Eliminate Bugs

21

Backup Slides

Data Flow Graph Availability

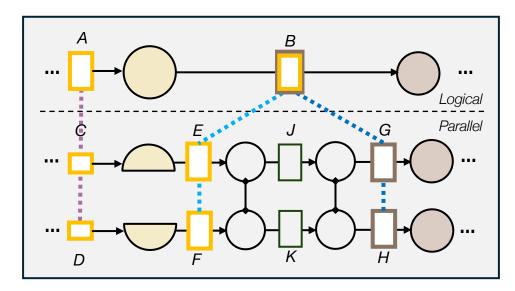


A Training Iteration

TrainVerify focuses on one iteration to leverage **loop homogeneity**.

For inhomogeneous loops, we can run verification for each of them.

Operator Alignment



Operators appearing in both logical and parallelized graphs bear source code location as beacon for alignment.

Operator Alignment → Tensor Lineage Alignment

Source code location: # A/B.model, line 24, $X_2 = Op(X_1)$

Source code location: # A/B.model, line 25, $X_3 = Op(X_2)$

Lineage as Spec for PE

From : SubTensorID

To : FullTensorID

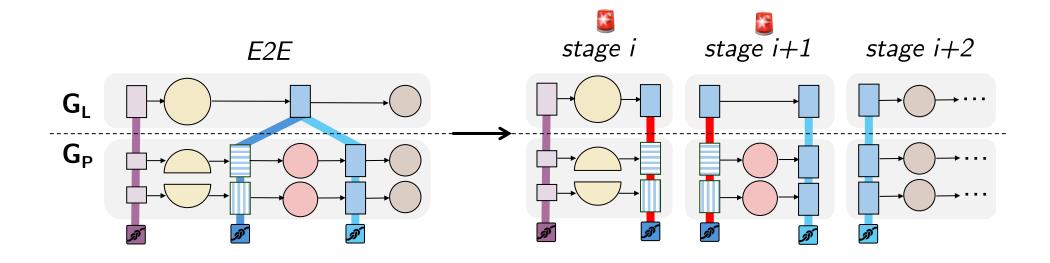
SliceMap: List[Slice]

ValueMap: (VID, Count)

Lineage

What if lineage is wrong?

- Possible: false positive (false alarm)
- Guarantee: no false negative (false pass)



Expressiveness of symbolics

Symbolics can *not:*

- Serve as array indexing: arr[x]
- Express index as output: $\mathbf{x} = \operatorname{argmax}(\cdot)$

Affect a small number of ops

Solution:

- Need tricks in rewriting symbolic operator
- Use *uninterpretd function* to encode tensor algebraic properties, make it adequate for passing equivalence checks for **practical** parallelization