
Training with Confidence:

Catching Silent Deep Learning Training
Errors with Automated Proactive Checks

Yuxuan Jiang, Ziming Zhou, Boyu Xu, Beijie Liu, Runhui Xu, Peng Huang

Healthy Metrics, Broken Training

2

BLOOM (176B) – 384 A100 GPU, 3.5 months

✅ ”Loss curve looks healthy”
🚨 Weights silently diverged across
GPUs

• Checkpoints became invalid

⚠ Could’ve wasted 3.5 months &
384 A100s

Took 10 days to notice, 4 more to diagnose and fix

🚨

BLOOM Isn’t Alone – Silent Training
Errors Are Everywhere

3

Seen in other large-scale projects

• OPT-175B: 17 loss explosions,
3+ training method changes

• BloombergGPT: weight decay
misapplied to all parameters

• Shanghai AI Lab: > 60% of GPU
time spent on cancelled jobs

How to detect silent
training errors early on?

4

Our Contribution: From Problem to Solution

5

🔍 Studied 88 real-world silent training errors
> GitHub issues, StackOverflow posts, and industry reports

🛠 TrainCheck: A System to Proactively Catch Silent Training Errors

Root causes are diverse and widespread

What We Learned from 88 Silent Errors

➡ We need runtime, end-to-end solutions to detect issues early
across the full training stack.

6

���������

���
�
��

�"
��

�

���

��

���

������!��

��� ��������

�

� ����	�
Single-component solutions (e.g.,
compiler testing) might be
inadequate

7

What We Learned from 88 Silent Errors

Step/Epoch

M
et

ric
-X

Loss

Accuracy

• No symptoms, until it’s too
late

• Noisy signal, unclear if it’s
a real issue

🧠 Eval metrics appear non-deterministic à ⏱ Delays in detection

Hard to detect & severe impact

➡ Early silent error detection should go beyond eval metrics

Training Invariants for Early Detection
★ Many silent errors have precise, actionable root causes

8

🎯Training Invariants

Concrete, accurate “specs” of the
low-level components

✅ Enable early detection

➡ Non-determinism is an artifact of checking at too high levels

Example: Bloom Parameter Divergence
Root cause: gradient clipping is only applied to the first worker
within tensor parallel (TP) groups

9

1.for_clipping === False à
collect gradients to compute norm
(de-duplication needed)

2.for_clipping === True à
collect gradients to be clipped (all
gradients needs to be clipped)

The de-duplication logic is misplaced to
for_clipping == True

Example: Bloom Parameter Divergence
Root cause: gradient clipping is only applied to the first worker
within tensor parallel (TP) groups

TP Worker 0 TP Worker 1

S0

S1

S2

Sn

… …

S0

S1

S2

Sn

Training Invariant:

1. API Behavior Invariant
get_grad_for_norm API contract

2. State Relationship:
Parameters should be equal across
workers

10

Tr
ai

ni
ng

 S
te

ps

gradient clipping is
triggered

❌ Error not detected until end of training

✅ Early
detection

An end-to-end system that infers and checks training invariants to
prevent silent training errors

Goals:
• Check properties lower than high-level signals

• Automated workflows

• Continuous runtime validation

• Systematically cover diverse root causes

7/6/25 11

Automated Inference + Proactive Validation

12

“Correct” Pipelines

Target
Training
Pipeline

Alerts

Transferable
Training

Invariants

Offline

Runtime

Instrumentor Inference
Engine

Fully-Instrumented Pipelines

Execution Traces

Verifier
with built-in instrumetor

Selective
Instrumentation

Inference Engine: Key Challenges

7/5/25 13

1. Inferring Semantically Relevant Invariants

2. Context-sensitive Semantics
• DL behaviors depend on subtle runtime contexts
• Statistical likelihood might not be a good indicator of invariant validity

3. Limited Development Histories for Inference
→ Invariants must be transferable

4. A Huge Search Space
• Each iteration logs 50 MB of traces (e.g., GPT-2 pretraining)

Invariant Representation

Consistent(torch.nn.Parameter.data, torch.nn.Parameter.data)

&&& UNEQUAL(meta_vars.TP_RANK)
&&& EQUAL(meta_vars.step)
&&& EQUAL(name)
&&& CONSTANT(attr.tensor_model_parallel, false)

(1) Relation (2) Descriptors – Abstraction over concrete
API / variable instances to check

(3) ★ Precondition (Context)

‼ Only applicable to LayerNorm
(<1% of parameters).

14

“The weights of certain layers should stay consistent across tensor parallelism (TP)
ranks.”

Invariant Inference Workflow
Traces

• Matches of
relation observed
à Hypothesis

Proactive Hypothesis
Generation

1

Full Hypothesis
Validation

2

Precondition
Deduction

3

• Determine
applicable
contexts

Validated
Training

Invariants

Hypotheses
(candidate invariants)

Passing & failing examples
for each hypothesis

• Full scan of
hypotheses
on traces

15

Inferring DL-tailored Invariants via Relations
Instantiate invariants using domain-specific templates for DL systems

7/5/25 16

Relation Description
Consistent(Va,V
b)

Va and Vb should have the same
values, while the values may change

EventContain(Ea
, Eb)

Eb must happen in the duration of Ea

APISequence(Ia,
Ib, ...)

Ia, Ib, . . . must all occur and in the
specified order

APIArg(Ia,
is_distinct)

Ensures argument consistency or
distinction in all calls to Ia

APIOutput(Ia,
bound_type)

The output of Ia must meet certain
attribute constraints

Traces
Hypotheses

Instantiate

→ Narrows the search space
→ Keeps inference relevant to training semantics

★ Precondition

7/5/25 17

For every hypothesis, infer a precondition based on passing/failing examples:

Precondition
Fou

nd
🎯 Invariant with Precondition

None
🚮 Pruned

Preconditions are conjunctions of conditions:
• CONSTANT: field equal to a constant
• EQUAL: field has the same value
• UNEQUAL: field has different values
• EXIST: field exists

Why Precondition

18

• Transferability across different training setups

• Validity of DL invariants is not tied to statistical likelihood
→ Help preserve rare but meaningful invariants
→ Prune superficial ones that happen to hold frequently

✅ Consistency Invariant (Bloom)
• Critical for correctness
• 1:38 Passing to Failing Ratio
• Accepted due to valid

precondition

❌ Consistent(torch.Tensor.is_cuda,
torch.Tensor.requires_grad)
• Superficial & irrelevant
• Holds 99% of the time
• Rejected due to missing precondition

Effort-free, Low-overhead Instrumentation
• Dynamic Instrumentation Via Monkey-Patching (API) & Proxy

(Variable)

• Low-overhead Checking Stage via Selective Instrumentation

7/5/25 19

E.g. Bloom-176B parameter consistency invariant only needs a
parameter dump per iteration.

torch.matmul = wrapper(torch.matmul) model = Proxy(model)

Invariants Instrument Options
• APIs of interest
• Trace dumping granularity

Detection & Diagnosis Benchmark
• We collect and reproduce 20 real-world silent training errors
• 6 in the empirical study, 14 newly collected

7/5/25 20

��������

���

�
�
�
�
�
�
�
�
�

���

���
�����

���

	���������

�
 �� �
 �� �
 	�

��"���$

�������#����������

�(!�"��"������ ���

��"�'�"��
"�&�"

� ��%""���(

������#%#�

�" ����##%�!$� �

�" ����$�$���!��$�

Quick & Actionable Detection

21

✅ TrainCheck detects 18 out of 20 real-
world silent training errors within 1
iteration

✅ TrainCheck provides actionable
diagnosis clues
• Pinpoints the exact root cause in 10 cases, close

to the root cause in 8 more

⚠ Baselines (stats
monitoring, PyTea +
NeuRI)
• Detect 3/20 cases total
• Pinpoints only 1 root cause

Another 6 new bugs exposed in DeepSpeed and Transformers

False Positive Rate <2%

• 63 representative
pipelines, diffs in scale,
complexity, and
frameworks used

7/6/25 22

👉 TrainCheck consistently shows < 2% FP rate with 5 representative
input pipelines

A Small Set of Inputs to Detect Many Errors

23

• Invariants used for all 18 cases are inferred from example pipelines.
PyTorch case study:
• GCN covers 77% of silent issues
• GCN + Autocast + DDP covers 100%

👉 Invariants can be inferred once and reused across pipelines

• One invariant, many pipelines
• 23% of inferred invariants in FP evaluation transfer across different

training tasks
• Conditional invariants transfer better than unconditional ones

Runtime overhead
• Measure per-iteration time slowdown before/after instrumentation.

• Typical checking stage (selective with 100 invariants deployed) is
< 11%

24

�����"$ ����� ��$ "�#��$�� ���#$ ��� #����#� %�� $��������#
��(�

���

���

��	

��

�$�
"�
$�

��
��
�
��
��
 &

�
&�

��'
�

���
 ���	 ���� ���� ���� ���
 ���� ���
 ����

#�$$"��� �!�$�� #����$�%�

Conclusions

25

Silent training errors are prevalent, costly, and hard to detect

Precondition deduction to ensure precision and
transferability

Key results:
• Caught 18/20 real-world silent issues, identified 6 new bugs
• ≤ 2% false positive rate, overhead ≤ 11% in realistic settings

https://github.com/OrderLab/TrainCheck

TrainCheck: automated validation of
training tasks using inferred invariants

Actively
Maintained!

https://github.com/OrderLab/TrainCheck

Backup Slides

26

What Silent Issues Does TrainCheck Target?
• TrainCheck targets objective correctness violations.

Model Architecture
Optimizer

Learning Rate
…

Optimization-Sensitive Choices
Incorrect API usage

Buggy Library Implementation
Faulty Hardware

…

Correctness Violations

TrainCheck focuses here

27

Case Study – AC-2665 Stagnant Training
• Root Cause: FSDP flattened parameters, corrupting the optimizer state
• Applying invariants from the PyTorch GCN example resulted in 100 violations (52 true alarms).

• True Positives (52):

• 33 à torch.optim.adamw.adamw were never invoked

• 17 à optimizer.step did not perform any update

• 1 à optimizer.zero_grad did not zero out gradients

à⚡ Optimizers were not properly initialized with model parameters!

• False positives (48) were quickly dismissed

• 26 à missing ReLU invocations (but T5 does not use ReLU)

• 7 à specific numerical values in GCN training (e.g., dropout_rate==0.5)

• Structured inspection allows quick identification of TP/FP

28

Example: Bloom Parameter Divergence
Trace snippet for torch.nn.Parameter

1

2

3

{"name": "layernorm.weight", "type": "torch.nn.Parameter", "meta_vars": {"TP_RANK": 0,
.....}, "attr": {"data": 411977, "is_cuda": true, "tensor_model_parallel": false,}}

{"name": "layernorm.weight", "type": "torch.nn.Parameter", "meta_vars": {"TP_RANK": 1,
.....}, "attr": {"data": 411977, "is_cuda": true, "tensor_model_parallel": false,}}

{"name": "dense_h_to_4h.bias", "type": "torch.nn.Parameter", "meta_vars": {"TP_RANK":
1,}, "attr": {"data": 650462, "is_cuda": true, "tensor_model_parallel": true,}}

1. Generate hypothesis

2. Validate hypothesis

3. Deduce precondition

Consistent(torch.nn.Parameter.data,
torch.nn.Parameter.data)

Passing samples: (,) Failing samples: (, ⓷), (⓶, ⓷)

1 2 1 3 32

UNEQUAL(meta_vars.TP_RANK) && EQUAL(meta_vars.step)
CONSTANT(attr.tensor_model_parallel, false) &&
EQUAL(name)

29

Baselines and methodology
• High-level signal
• (1) Spike, (2) Trend (3) Anomaly Detection

• Existing research artifact
• PyTea [ICSE’22] + NeuRI [ESEC/FSE’23]: Automatically inferring and checking

shaping constraints for APIs.

Pipelines with
Silent Issues

Train stats (high-level signals)

Trace (TrainCheck, and PyTea + NeuRI)

30

🤔 How to get these invariants?
⚠ Manual specification/debugging doesn’t scale
• Infrastructure is complex, and evolution is fast-paced

• Encoding intuitions into accurate checks is hard

31

➡ Automated inference of precise, context-aware invariants

Rough Invariant for Catching the Bloom
Parameter Divergence Error

7/5/25 32

The weights of certain layers should stay consistent

across tensor parallelism (TP) ranks

(1) Entities to be checked (2) Relationship

(3) Meta Variables

