REPRODUCED

M @OrderLab

Tr aingheck AVAILABLE

MICHIGAN

Training with Confidence:
Catching Silent Deep Learning Training
Errors with Automated Proactive Checks

Yuxuan Jiang, Ziming Zhou, Boyu Xu, Beijie Liu, Runhui Xu, Peng Huang

Healthy Metrics, Broken Training

BL M BLOOM (176B) — 384 A100 GPU, 3.5 months

176B params - 59 languages Open

“Loss curve looks healthy”

@ Weights silently diverged across
GPUs

Im-loss-training/Im loss vs tokens y7¢g-m1
tag: Im-loss-training/Im loss vs tokens

” * Checkpoints became invalid
35 Y. Could’ve wasted 3.5 months &
25 384 A100s

0 4G B8G 112G 116G 20G 24G

Took 10 days to notice, 4 more to diagnose and fix

BLOOM Isn’t Alone - Silent Training
Errors Are Everywhere

Seen in other large-scale projects

state:open label:"module: correctness (silent)" Q O Labels & Mile:

Open 144 Closed 387 Author ~ Labels ~ Projects ~ Milestones ~ L4 OPT—1 758: 17 |OSS eXpl()SionS,

(® [MPSInductor] Silently incorrect result with varmean+epilogue 3 -|— tra | N | N g m eth Od Ch a N g eS
module: correctness (silent) module: mps

#156426 - malfet opened 2 days ago - CP 2.8.0
@ Dynamo trace an incorrect result on torch._C._storage_Use_Count b o .
module: correctness (silent) module: dynamo - ¢ B I oo m e rg G PT i We I g h t d e Ca y
#156059 - guangyey opened 5 days ago . | o d | |
misapplied to all parameters

(® torch.compile produces incorrect output QUELILLLED « module: correctness (silent)

#155690 - HIT-cwh opened last week

« Shanghai Al Lab: > 60% of GPU
time spent on cancelled jobs

How to detect silent
training errors early on?

Our Contribution: From Problem to Solution

§ Studied 88 real-world silent training errors

> GitHub issues, StackOverflow posts, and industry reports

X TrainCheck: A System to Proactively Catch Silent Training Errors

TrainCheck

What We Learned from 88 Silent Errors

Root causes are diverse and widespread

OP HW/Driver
12% 12% C | . .
- £ Yk Single-component solutions (e.g.,
o 4% Others . . .
é 32% compiler testing) might be
£ 32% inadequate

User code

&d We need runtime, end-to-end solutions to detect issues early
across the full training stack.

What We Learned from 88 Silent Errors

Hard to detect & severe impact

“@ Eval metrics appear non-deterministic > & Delays in detection

:.' Weights & Biases TensorBoard imosstranngmioss votokens e\, | @) N O Sym pto m SI U N ti | itls tOO
A Accu racy n | | ate
.0 ') withoutroise — with noise
3 ul * Noisy signal, unclear if it's
o P N a real issue

Step/Epoch

&d Early silent error detection should go beyond eval metrics

Training Invariants for Early Detection
* Many silent errors have precise, actionable root causes

o
_ = @ Training Invariants
g

Concrete, accurate “specs” of the
low-level components

Im-loss-training/Im loss vs tokens 47¢g.m1 '\/ 035 without noise —— with noise
tag: Im-loss-training/Im loss vs tokens
0.30
: .; Enable early detection

Non-determinism is an artifact of checking at too high levels

Example: Bloom Parameter Divergence

% Root cause: gradient clipping is only applied to the first worker
within tensor parallel (TP) groups

1.for_clipping = False >
_~ collect gradients to compute norm
(de-duplication needed)

@torch.no_grad()
def get_grads_for_norm(self,|for_clipping=False):
grads = []
tensor_mp_rank = bwc_tensor_model_paralle

for i, group in enumerate(self.bflé6_

for j, 1lp in enumerate(grou

if not for_clipping:

. 2.for_clipping = True >
if hasattr(lp, PIPE_REPLICATED) and 1lp. - . .
continue collect gradients to be clipped (all
if not (tensor_mp_rank == @ or is_model_pan gradieﬂts ﬂeedS to be Cllpped)

continue # YUXUAN: as compared to the deege=rree—co= = ————— S —

if 1f.fp32 H . . 5 o .
T i 1 The de-duplication logic is misplaced to

for_clipping == True

grads.append(self.fp32_gn

return grads

Example: Bloom Parameter Divergence

% Root cause: gradient clipping is only applied to the first worker

within tensor parallel (TP) groups

TP Worker O TP Worker 1

wn

Q.

Q

& —

g’ gradient clipping is Early
I= 4~ triggered ~> detection
©

= ¢ R

\4

X Error not detected until end of training

Training Invariant:

1. APl Behavior Invariant
get _grad for_norm API contract

2. State Relationship:
Parameters should be equal across

workers

10

TrainCheck

An end-to-end system that infers and checks training invariants to
prevent silent training errors

Goals:
* Check properties lower than high-level signals
« Automated workflows
» Continuous runtime validation

« Systematically cover diverse root causes

7/6/25

11

Automated Inference + Proactive Validation

"Correct” Pipelines Transfe.rable
Training

[X) o .
examples in! il Invariants
=

@ transformers

Selective

Target Instrumentation A| erts

Training

Pipeline Mummmm——) Verifier I
with built-in instrumetor - -
[©]

Runtime

12

Inference Engine: Key Challenges

1. Inferring Semantically Relevant Invariants

2. Context-sensitive Semantics
* DL behaviors depend on subtle runtime contexts
« Statistical likelihood might not be a good indicator of invariant validity

3. Limited Development Histories for Inference
— Invariants must be transferable

4. A Huge Search Space
 Each iteration logs 50 MB of traces (e.g., GPT-2 pretraining)

7/5/25

13

Invariant Representation

"The weights of certain layers should stay consistent across tensor parallelism (TP)
ranks.”

(1) Relation (2) Descriptors — Abstraction over concrete
APl / variable instances to check
/
Consistent(torch.nn.Parameter.data, torch.nn.Parameter.data)
66 UNEQUAL(meta_vars.TP_RANK) ' Only applicable to LayerNorm
&6 EQUAL(meta_vars.step) (<1% of parameters).

§& EQUAL(name)
&6 CONSTANT(attr.tensor_model parallel, false)

(3) % Precondition (Context)

Invariant Inference Workflow

Validated

Traces Training

D D Invariants

Hypotheses Passing & failing examples»ﬁ
(candidate invariants) for each hypothesis
Proactive Hypothesis Full Hypothesis Precondition
Generation Validation Deduction

* Matches of * Full scan of * Determine
relation observed hypotheses applicable

- Hypothesis on traces contexts

15

Inferring DL-tailored Invariants via Relations

Instantiate invariants using domain-specific templates for DL systems

Consistent (Va,V Va and Vb should have the same
b) values, while the values may change

EventContain (Ea Eb must happen in the duration of Ea
» EDb)

APISequence (Ia, la,lb,...mustall occurandin the Hypotheses
o, ...) specified order [] Traces Instantiate

APIArg(Ia, Ensures argument consistency or | N\ N |:> q

is distinct) distinction in all calls to la

APIOutput (Ia, The output of la must meet certain - Q

bound type) attribute constraints

— Narrows the search space

— Keeps inference relevant to training semantics

7/5/25 16

Precondition

For every hypothesis, infer a precondition based on passing/failing examples:

Q (,09(\6

Precondition <_y,

SISV

o
S

@ Invariant with Precondition

Pruned

Ny

Preconditions are conjunctions of conditions:
« CONSTANT: field equal to a constant

- EQUAL: field has the same value

« UNEQUAL: field has different values

« EXIST: field exists

s

7/5/25

17

Why Precondition

» Transferability across different training setups

 Validity of DL invariants is not tied to statistical likelihood

— Help preserve rare but meaningful invariants
— Prune superficial ones that happen to hold frequently

Consistency Invariant (Bloom) X Consistent(

e Critical for correctness)
 1:38 Passing to Failing Ratio » Superficial & irrelevant
* Accepted due to valid * Holds 99% of the time

precondition * Rejected due to missing precondition

18

Effort-free, Low-overhead Instrumentation

e Dynamic Instrumentation Via Monkey-Patching (API) & Proxy
(Variable)

torch.matmul = wrapper(torch.matmul) model = Proxy(model)

* Low-overhead Checking Stage via Selective Instrumentation

Invariants Instrument Options

QQ — APls of interest
 Trace dumping granularity

E.g. Bloom-176B parameter consistency invariant only needs a
parameter dump per iteration.

7/5/25

19

Detection & Diagnosis Benchmark

* We collect and reproduce 20 real-world silent training errors

* 6 in the empirical study, 14 newly collected

HW/Driver Edge Case Handling A
HyperParam. Choice -

15% _ Hardware/Driver -

59% Compiler Concurrency A

65% . API Misuse -
15% Wrong Assumption -

Wrong State Update -

0 5 10 15 20 25 30
Percent

User code

Framework

Quick & Actionable Detection

TrainCheck detects 18 out of 20 real-
world silent training errors within 1

toration . Baselines (stats
monitoring, PyTea +

TrainCheck provides actionable NeuRl)

diagnosis clues « Detect 3/20 cases total

. . * Pinpoints only 1 root cause
* Pinpoints the exact root cause in 10 cases, close X y

to the root cause in 8 more

Another 6 new bugs exposed in DeepSpeed and Transformers
21

False Positive Rate <2%

False Positive Rate

False Positive Rate

7/6/25

©
o
o

o
o
=

o©
o
]

0.00

0.06

0.04

©
o
N

©
o
o

CNN-based Image Classification Language Modeling
2-input 2-input
B 6-input B S5-input
O
O
. | + | l b4 * 63 representative
r © u : . : :
All Cross Cross All Cross Cross plpellnes’ dlﬁs N Scale,
Configuration Pipeline Configuration Pipeline I o d
Diffusion Vision Transformer Comp eXItyl an
2-input 3-input
= s | B 3o frameworks used
O
O +
O
& OB om
All Cross Cross All Cross Cross
Configuration Pipeline Configuration Pipeline

-~ TrainCheck consistently shows < 2% FP rate with 5 representative

input pipelines

22

A Small Set of Inputs to Detect Many Errors

 Invariants used for all 18 cases are inferred from example pipelines.

PyTorch case study:

e GCN covers 77% of silent issues
e GCN + Autocast + DDP covers 100%

* One invariant, many pipelines
« 23% of inferred invariants in FP evaluation transfer across different
training tasks
« Conditional invariants transfer better than unconditional ones

“~ Invariants can be inferred once and reused across pipelines
23

Runtime overhead

Measure per-iteration time slowdown before/after instrumentation.

\\\ settrace 777 mpatch == selective

o |
—

1
— i L

OOV

N 2222220002222,

~

o |
SHHIITTTI

s SN CNNR AR

S S A S S S
o |

S

CEANNN NN RRARNNS

W/ /S S S

m

o
—HHILLTT

s SO SNARNNNGE

BA/S S SSS S SS

(] 1
<
= HELILT

S>ONNRANRAAGAANGN &

M/ /s s/ s sy s /A

—

0_
— [T

RO HARR

e VP22 22

8
— I

AN\

\P222222

A

o
=

e SO SN

A S S S S SN S S)

N~

—
= R

CONNSNNNNRNANNNN

na VP2 222222222 22244

o~ — o
o o o

m —
o |
— — — — o
—
(x

) UMOPMOI|S SWI] U0I1eld)|

g _cls

vae tf im

siamese

gcn

resnetl8 mnist

gat

gan

ac_bert dc

» Typical checking stage (selective with 100 invariants deployed) is

<11%

24

Conclusions

Silent training errors are prevalent, costly, and hard to detect

TrainCheck @

https://github.com/Orderlab/TrainCheck

TrainCheck: automated validation of
training tasks using inferred invariants

Precondition deduction to ensure precision and
transferability

Key results:

e Caught 18/20 real-world silent issues, identified 6 new bugs Actively
Maintained!

« < 2% false positive rate, overhead < 11% in realistic settings
25

https://github.com/OrderLab/TrainCheck

Backup Slides

What Silent Issues Does TrainCheck Target?

« TrainCheck targets objective correctness violations.

TrainCheck focuses here

Correctness Violations

Incorrect APl usage

Buggy Library Implementation
Faulty Hardware

Model Architecture
Optimizer
Learning Rate

27

Case Study — AC-2665 Stagnant Training

Root Cause: FSDP flattened parameters, corrupting the optimizer state
Applying invariants from the PyTorch GCN example resulted in 100 violations (52 true alarms).

True Positives (52):
« 33> torch.optim.adamw.adamw were never invoked
« 17 > optimizer.step did not perform any update
« 1> optimizer.zero_grad did not zero out gradients

- 7 Optimizers were not properly initialized with model parameters!

False positives (48) were quickly dismissed
« 26 > missing ReLU invocations (but T5 does not use RelLU)
7 = specific numerical values in GCN training (e.g., dropout_rate==0.5)

 Structured inspection allows quick identification of TP/FP

28

Example: Bloom Parameter Divergence

Trace snippet for

<:> {"name": "layernorm.weight", " ": "torch.nn.Parameter", "meta_vars"': {"TP_RANK": 0,
.. r, "attr": {fdata": 411977,]" da": true, "tensor_model parallel": false, _...}}
{"name": "layernorm.weight", " . "tqrch.nn.Parameter", "meta_vars"': {"TP_RANK": 1,
@ ...}, "attr": {ﬁdata": 411977,] i © true, "tensor_model parallel": false, _...}}
{"name": "dense h to 4h.bias", "type": "torch.nn.Parameter", "meta_vars": {"TP_RANK":
1, ...}, "attr": {"data": 65@462,]"is_cu a": true, "tensor_model _parallel": true, _...r}

©

~ Consistent (
1. Generate hypothesis

)
2. Validate hypothesis Passing samples: (@,@) Failing samples: (), @), @,O)

UNEQUAL (meta vars.TP RANK) && EQUAL (meta vars.step)
CONSTANT (attr.tensor model parallel, false) &&
EQUAL (name)

3. Deduce precondition

29

Baselines and methodology

« High-level signal
* (1) Spike, (2) Trend (3) Anomaly Detection

 Existing research artifact

« PyTea [ICSE'22] + NeuRI [ESEC/FSE'23]: Automatically inferring and checking
shaping constraints for APIs.

Trai high-level signal
Pipelines with __— Train stats (high-level signals)
Sllent Issues \ Trace (TrainCheck, and PyTea + NeuRl)

30

@ How to get these invariants?

. Manual specification/debugging doesn’t scale
* Infrastructure is complex, and evolution is fast-paced

e Encoding intuitions into accurate checks is hard

&J Automated inference of precise, context-aware invariants

31

Rough Invariant for Catching the Bloom

Parameter Divergence Error

7/5/25

(1) Entities to be checked

The weights

of certain layers should stay

(2) Relationship

consistent

across| tensor parallelism (TP) ranks

32

