Optimistic Recovery for
High-Availability Software via
Partial Process State Preservation

Yuzhuo Jing, Yugi Mai, Angting Cai, Yi Chen, Wanning He,
Xiaoyang Qian, Peter M. Chen, Peng Huang

University of Michigan

SOSP ’25 MICHIGAN

EEEEEEEEEEE

IIIIIIIIIIIIIIIIIIII

Availability Is Crucial

Requests Large # of requests

/

Time

High SLO Brief downtime
Requirement but high impact

Software Faults Are Inevitable

Crashes

e redis

Memory Ieaks

Freezes

Degraded Performance

Recovery requirements:
1. High availability: must recover both quickly and correctly

2. Meaningful availability: service not only being up but also high performance

Recovery In Practice
Practice 1: Restart with Empty State

Pros:
Restarted o Simplicity

e Eliminate bad state

Cons:

 Poor avallability post-restart

New requests

L%Yll Repopulate

Recovery In Practice

Practice 2: Process Checkpointing

Pros:

Restarted o Better post-restart
performance

Cons:

* Risks persisting faulty state

Periodic
Checkpoint

Dilemma

Restarted
Performance

Best of Both

Preserve None Preserve All

Correct j None Serves latest state

@f Poor availability Correctness

during warmup % Buggy state preserved

6

Challenges

« How to determine what state to preserve?
* Partial Process State Preservation
 How to get high availability without compromising correctness?

 Optimistic Recovery

What state to preserve?

_ Restarted
State Size €= PerfomanCe

Best of Both

@

Preserve large
state

Nne

Correctness €= Code Complexity

Discard error-prone state

Insight: State Size & Complexity Imbalance

.
S State

long-lived

@j smal transient

Opportunity: preserve large state with
low chance of incorrectness

Phoenix: Partial State Preservation

Faulty Process = Restarted Process

Transient state

Preservable
state

Reloaded
executable
Image

Kernel preserve_exec()

10

Phoenix: Partial State Preservation

Faulty Process = Restarted Process

@ Reinitialized

——

Discarded

——r Preserved
v\ -
v

Reloaded
executable
Image

Kernel preserve_exec()

Zero-copy preservation

11

Phoenix

 Partial Process State Preservation

 Optimistic Recovery
 Unsafe Region: efficient consistency check

 Cross-Check Validation: long-term assurance

12

Optimistic Recovery

Designed to provide high chance of quick recovery

Repopulate
Default recovery: @IQ/ request

& Restart ‘CA Recover 4@ Warm up 4@
I Tl I
—

S=— L.oad persisted file
N—

Optimistic Recovery

Designed to provide high chance of quick recovery

Default recovery:

' Restart
A=

When state Is consistent
Phoenix Fast Path

Qm

—_— —_—

Fallback when inconsistent

14

How to detect inconsistency?
Insight from Real-World Bug Study

Collect 64 case from 6 systems
e 50 transient-only

* Discarding transient state already give
correctness

* 8 corruption in long-lived state

* High-correlation: all happen during
modification operations

Solution: fallback on

iInconsistent write

" Consistent
B Corrupted Global

15

Unsafe Region

Write portion of preservable state
in one transaCtion Transaction

—_—Gl—{ —(

Read R/W Read

Example: Network connect Data structure Request reply
Request parsing updates Stats update

Either manual marking or using Phoenix

compiler auto-instrumentation
16

Unsafe Region

o Safe and effective indication of inconsistency in experiment

e However, indirect indication IS not assurance

 Background Cross-Check Validation

17

Cross-Check Validation

Faulty process

fork<

Default
recovery

phx

Speculative service

new
Preserved req
Preserved

CrosSsS

Reference State

)

check

Background validation

18

Cross-Check Validation

If cross-check matches

Speculative service

Preserved ,f’eec‘q’v - Continue

Preserved

- Exit

Background validation

Availability gain from Phoenix restart!

19

Cross-Check Validation

Speculative service

Preserved

new
req

If cross-check differs

- Exit

Preserved

Reference State

Background validation

- Continues

20

Cross-Check Validation

Before fault Speculation After cross-check
P Pr——

Timeline:

B Long-term Correctness
Guarantee

cross check

Potential inconsistency bounded to

cross-check window

21

Evaluation

* |mplemented Phoenix in Linux kernel 5.15
* Ported 6 applications without knowing the bugs

* We try to answer questions:

» Effectiveness: How much availability improvement does Phoenix achieve?

 Correctness: Does Phoenix recover correctly?

 Effort: What effort and overhead are required to employ Phoenix®?

22

Ported Applications

App Preserved States Codebase LoC Changes
Redis In-mem KV hash table 140,996 348 (0.25%)
LevelDB Skiplist memory tables 21,192 312 (1.50%)
Varnish Web page cache objects 109,564 281 (0.26%)
Squid Web page cache objects 186,219 190 (0.10%)
XGBoost Gradients and model 38,906 158 (0.41%)
VPIC Particles and physical fields 44,773 272 (0.61%)

Only moderate usage efforts

Availability

Reproduce 17 real-world bugs from various categories.

Compare between 4 setups Performance

 None: Original application without persistence

Al
* All: Whole process checkpointing (CRIU)

 Builtin: Application default recovery method

e Phoenix: Phoenix with Builtin as fallback

16 recovered by Phoenix

1 fallback to default recovery

@ Phoenix

‘Buntln

None

Correctness

24

Availability

Time to Recover to 90% of Effective Availability

= Hitrate fo cache, troughteut forothers.

B Nothing 2 Builtin All o Phoenix

Recovery Time
(log scale)

1000

Similar time for fallback
A//

N N BN S

N 50\\)\6

100

10

gt

Quickly restore performance to pre-

restart 25

Correctness: Large Scale Injection
Only Unsafe Region

Total: 4,000 runs

Phoenix
Fast Path 3,287 successful Phoenix
_ / recovery
VY |
82% fast path taken
‘g \ 662 unsafe region caught
Fallback

| 51 faulty restart caught

20

Correctness: Large Scale Injection

Cross-Check Mode
Total: 400 runs

Phoenix 325 successful Phoenix recovery
passing cross-check

Fast Path |
/ \ 5 cross-check early fallbacks
Fallback 4@ 65 unsafe region caught

| 5 faulty restart caught

Conclusion

> Partial state preservation
o Effectively preserves most state while discarding most faults

> Optimistic recovery

* High avallability with long-term correctness guarantee

» New OS-level mechanism Phoenix

» Significant availability and performance improvements

@ https://github.com/OrderLab/phoenix

28

https://github.com/OrderLab/phoenix

