
Optimistic Recovery for
High-Availability Software via

Partial Process State Preservation

Yuzhuo Jing, Yuqi Mai, Angting Cai, Yi Chen, Wanning He,
Xiaoyang Qian, Peter M. Chen, Peng Huang

University of Michigan

SOSP ’25

Availability Is Crucial

2

99.999…%

High SLO
Requirement

Requests

Time

Brief downtime
but high impact

Large # of requests

3

Software Faults Are Inevitable

Recovery requirements:

1. High availability: must recover both quickly and correctly

2. Meaningful availability: service not only being up but also high performance

Memory leaks

Crashes

Degraded Performance

Freezes

Recovery In Practice
Practice 1: Restart with Empty State

4

Restarted

Cons:

• Poor availability post-restart

💥Faulty App

New requests

Pros:

• Simplicity

• Eliminate bad state

Repopulate

Recovery In Practice
Practice 2: Process Checkpointing

5

💥 Restarted

Cons:

• Risks persisting faulty state

Faulty App

Pros:

• Better post-restart
performance

Periodic
Checkpoint

Dilemma

6

Preserve None Preserve All

🐞 Buggy state preserved

✅ Correct

🐌 Poor availability
during warmup

Serves latest state

Restarted
Performance

Correctness

?

None

All Best of Both

trade-of

Challenges

• How to determine what state to preserve?

• How to get high availability without compromising correctness?

7

• Partial Process State Preservation

• Optimistic Recovery

What state to preserve?

8

Preserve large
state

Discard error-prone state

Restarted
Performance

Correctness

?

None

All Best of Both

State Size

Code Complexity

Insight: State Size & Complexity Imbalance

9
Opportunity: preserve large state with
low chance of incorrectness

Code

complex

error-prone

less complex

State

small

large long-lived

transient

Phoenix: Partial State Preservation

10

Faulty Process

Transient state

Preservable
state

💥 Restarted Process

Runtime

Kernel

phx_restart() libc_recover()

preserve_exec()

Reloaded
executable
image

App

Phoenix: Partial State Preservation

11

Faulty Process

Transient state

💥 Restarted Process

Reinitialized

Preserved

Runtime

Kernel

Discarded
Reloaded
executable
image

App

phx_restart() libc_recover()

preserve_exec()

Zero-copy preservation

Phoenix

• Partial Process State Preservation

• Optimistic Recovery

• Unsafe Region: efficient consistency check

• Cross-Check Validation: long-term assurance

12

Optimistic Recovery
Designed to provide high chance of quick recovery

13

💥 Restart
 Recover Warm up

Load persisted file

Repopulate
by requestDefault recovery:

Optimistic Recovery

14

💥 Restart
 Recover Warm up

Phoenix Fast Path
When state is consistent

Default recovery:

Fallback when inconsistent

Designed to provide high chance of quick recovery

How to detect inconsistency?
Insight from Real-World Bug Study

Collect 64 case from 6 systems

• 56 transient-only

• Discarding transient state already give
correctness

• 8 corruption in long-lived state

• High-correlation: all happen during
modification operations

15

0

6

12

18

Red
is

MyS
QL

Had
oo

p

Mon
go

DB
Cep

h

Elas
tic

Sea
rch

Corrupted Global
Consistent

Solution: fallback on
inconsistent write

Unsafe Region
Write portion of preservable state
in one transaction

16

Transaction

R/WRead Read
Network connect
Request parsing

Data structure
updates

Request reply

Stats update

Unsafe Region

Either manual marking or using Phoenix
compiler auto-instrumentation

Example:

Safe Safe

Unsafe Region

• Safe and effective indication of inconsistency in experiment

• However, indirect indication is not assurance

• Background Cross-Check Validation

17

Cross-Check Validation

18

cross 
check

Preserved

Speculative service

Reference State

Faulty process

Preserved

Background validation

new 
req

fork

 Default
recovery

phx

Cross-Check Validation

19

Preserved

Speculative service

Preserved

Background validation

Exit

new 
req Continue

If cross-check matches

Availability gain from Phoenix restart!

Reference State

Cross-Check Validation

20

Preserved

Speculative service

Preserved

Background validation

Continues

new 
req Exit

If cross-check differs

Reference State

Cross-Check Validation

21

Before fault
Timeline:

After cross-checkSpeculation

Potential inconsistency bounded to
cross-check window

cross check

Long-term Correctness
Guarantee

Evaluation
• Implemented Phoenix in Linux kernel 5.15

• Ported 6 applications without knowing the bugs

• We try to answer questions:

• Effectiveness: How much availability improvement does Phoenix achieve?

• Correctness: Does Phoenix recover correctly?

• Effort: What effort and overhead are required to employ Phoenix?

22

Ported Applications

23

App Preserved States Codebase LoC Changes
Redis In-mem KV hash table 140,996 348 (0.25%)

LevelDB Skiplist memory tables 21,192 312 (1.50%)

Varnish Web page cache objects 109,564 281 (0.26%)

Squid Web page cache objects 186,219 190 (0.10%)

XGBoost Gradients and model 38,906 158 (0.41%)

VPIC Particles and physical fields 44,773 272 (0.61%)

Only moderate usage efforts

Availability

24

Reproduce 17 real-world bugs from various categories.

Compare between 4 setups

• None: Original application without persistence

• All: Whole process checkpointing (CRIU)

• Builtin: Application default recovery method

• Phoenix: Phoenix with Builtin as fallback

Performance

Correctness

Phoenix

None

All

Builtin

16 recovered by Phoenix

1 fallback to default recovery

1

10

100

1000

Redis

(Fallback) Redis
LevelDB

Varnish
Squid

XGBoost
VPIC

Nothing Builtin All Phoenix

Availability
Time to Recover to 90% of Effective Availability

25

Recovery Time 
(log scale)

Quickly restore performance to pre-
restart

Hit rate for cache, throughtput for others

Similar time for fallback

Correctness: Large Scale Injection
Only Unsafe Region

26

💥

Phoenix
Fast Path

82% fast path taken

Fallback

3,287 successful Phoenix
recovery

662 unsafe region caught

Total: 4,000 runs

51 faulty restart caught

Correctness: Large Scale Injection
Cross-Check Mode

27

💥

Phoenix
Fast Path

Fallback

325 successful Phoenix recovery
passing cross-check

65 unsafe region caught

Total: 400 runs

5 cross-check early fallbacks

5 faulty restart caught

Conclusion

28
https://github.com/OrderLab/phoenix

‣ Partial state preservation

• Effectively preserves most state while discarding most faults

‣ Optimistic recovery

• High availability with long-term correctness guarantee

‣ New OS-level mechanism Phoenix

• Significant availability and performance improvements

https://github.com/OrderLab/phoenix

