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Availability Is Crucial 
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Software Faults Are Inevitable

Recovery requirements:


1. High availability: must recover both quickly and correctly


2. Meaningful availability: service not only being up but also high performance

Memory leaks

Crashes

Degraded Performance

Freezes



Recovery In Practice
Practice 1: Restart with Empty State
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Restarted

Cons: 

• Poor availability post-restart

💥Faulty App

New requests

Pros: 

• Simplicity


• Eliminate bad state

Repopulate



Recovery In Practice
Practice 2: Process Checkpointing
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💥 Restarted

Cons: 

• Risks persisting faulty state

Faulty App

Pros: 

• Better post-restart 
performance

Periodic 
Checkpoint



Dilemma
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Preserve None Preserve All

🐞 Buggy state preserved

✅ Correct

🐌 Poor availability 
during warmup

Serves latest state

Restarted 
Performance

Correctness

?

None

All Best of Both

trade-of



Challenges

• How to determine what state to preserve?


• How to get high availability without compromising correctness?
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• Partial Process State Preservation 

• Optimistic Recovery



What state to preserve?
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Preserve large 
state

Discard error-prone state

Restarted 
Performance

Correctness

?

None

All Best of Both

State Size

Code Complexity



Insight: State Size & Complexity Imbalance
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Opportunity: preserve large state with 
low chance of incorrectness

Code

complex

error-prone

less complex

State

small

large long-lived

transient



Phoenix: Partial State Preservation
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Faulty Process

Transient state

Preservable 
state

💥 Restarted Process

Runtime

Kernel

phx_restart() libc_recover()

preserve_exec()

Reloaded 
executable 
image

App



Phoenix: Partial State Preservation
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Faulty Process

Transient state

💥 Restarted Process

Reinitialized

Preserved

Runtime

Kernel

Discarded
Reloaded 
executable 
image

App

phx_restart() libc_recover()

preserve_exec()

Zero-copy preservation



Phoenix

• Partial Process State Preservation


• Optimistic Recovery 

• Unsafe Region: efficient consistency check


• Cross-Check Validation: long-term assurance
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Optimistic Recovery
Designed to provide high chance of quick recovery
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💥 Restart
 Recover Warm up

Load persisted file

Repopulate 
by requestDefault recovery:



Optimistic Recovery
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💥 Restart
 Recover Warm up

Phoenix Fast Path
When state is consistent

Default recovery:

Fallback when inconsistent

Designed to provide high chance of quick recovery



How to detect inconsistency?
Insight from Real-World Bug Study

Collect 64 case from 6 systems


• 56 transient-only


• Discarding transient state already give 
correctness


• 8 corruption in long-lived state


• High-correlation: all happen during 
modification operations
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Unsafe Region
Write portion of preservable state 
in one transaction
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Transaction

R/WRead Read
Network connect 
Request parsing

Data structure 
updates 

Request reply

Stats update

Unsafe Region

Either manual marking or using Phoenix 
compiler auto-instrumentation

Example:

Safe Safe



Unsafe Region

• Safe and effective indication of inconsistency in experiment


• However, indirect indication is not assurance


• Background Cross-Check Validation
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Cross-Check Validation
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check
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Speculative service

Reference State
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fork

  Default 
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Cross-Check Validation
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Preserved

Speculative service

Preserved

Background validation

Exit

new 
req Continue

If cross-check matches

Availability gain from Phoenix restart!

Reference State



Cross-Check Validation
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Preserved

Speculative service

Preserved

Background validation

Continues

new 
req Exit
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Reference State



Cross-Check Validation
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Before fault
Timeline:

After cross-checkSpeculation

Potential inconsistency bounded to 
cross-check window

cross check

Long-term Correctness 
Guarantee



Evaluation
• Implemented Phoenix in Linux kernel 5.15


• Ported 6 applications without knowing the bugs


• We try to answer questions:


• Effectiveness: How much availability improvement does Phoenix achieve?


• Correctness: Does Phoenix recover correctly?


• Effort: What effort and overhead are required to employ Phoenix?
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Ported Applications
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App Preserved States Codebase LoC Changes
Redis In-mem KV hash table 140,996 348 (0.25%)

LevelDB Skiplist memory tables 21,192 312 (1.50%)

Varnish Web page cache objects 109,564 281 (0.26%)

Squid Web page cache objects 186,219 190 (0.10%)

XGBoost Gradients and model 38,906 158 (0.41%)

VPIC Particles and physical fields 44,773 272 (0.61%)

Only moderate usage efforts



Availability
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Reproduce 17 real-world bugs from various categories.


Compare between 4 setups


• None: Original application without persistence


• All: Whole process checkpointing (CRIU)


• Builtin: Application default recovery method


• Phoenix: Phoenix with Builtin as fallback

Performance

Correctness

Phoenix

None

All

Builtin

16 recovered by Phoenix

1   fallback to default recovery
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Nothing Builtin All Phoenix

Availability
Time to Recover to 90% of Effective Availability
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Recovery Time 
(log scale)

Quickly restore performance to pre-
restart

Hit rate for cache, throughtput for others

Similar time for fallback



Correctness: Large Scale Injection
Only Unsafe Region
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💥

Phoenix 
Fast Path

82% fast path taken

Fallback

3,287 successful Phoenix 
recovery

662 unsafe region caught

Total: 4,000 runs

51   faulty restart caught



Correctness: Large Scale Injection
Cross-Check Mode
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💥

Phoenix 
Fast Path

Fallback

325 successful Phoenix recovery 
passing cross-check

65 unsafe region caught

Total: 400 runs

5 cross-check early fallbacks

5   faulty restart caught



Conclusion
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https://github.com/OrderLab/phoenix

‣  Partial state preservation


• Effectively preserves most state while discarding most faults


‣  Optimistic recovery


• High availability with long-term correctness guarantee


‣  New OS-level mechanism Phoenix


• Significant availability and performance improvements

https://github.com/OrderLab/phoenix

