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Availability Is Crucial

Requests Large # of requests

/

Time

High SLO Brief downtime
Requirement but high impact



Software Faults Are Inevitable

Crashes

e redis

Memory Ieaks

Freezes

Degraded Performance

Recovery requirements:
1. High availability: must recover both quickly and correctly

2. Meaningful availability: service not only being up but also high performance



Recovery In Practice
Practice 1: Restart with Empty State

Pros:
Restarted o Simplicity

e Eliminate bad state

Cons:

 Poor avallability post-restart

New requests

L%Yll Repopulate



Recovery In Practice

Practice 2: Process Checkpointing

Pros:

Restarted o Better post-restart
performance

Cons:

* Risks persisting faulty state

Periodic
Checkpoint



Dilemma

Restarted
Performance

Best of Both

Preserve None Preserve All

Correct j None Serves latest state

@f Poor availability Correctness

during warmup % Buggy state preserved
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Challenges

« How to determine what state to preserve?
* Partial Process State Preservation
 How to get high availability without compromising correctness?

 Optimistic Recovery



What state to preserve?

_ Restarted
State Size €= PerfomanCe

Best of Both

@

Preserve large
state

Nne

Correctness €= Code Complexity

Discard error-prone state



Insight: State Size & Complexity Imbalance

.
S State

long-lived

@j smal transient

Opportunity: preserve large state with
low chance of incorrectness




Phoenix: Partial State Preservation

Faulty Process = Restarted Process

Transient state

Preservable
state

Reloaded
executable
Image

Kernel preserve_exec()
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Phoenix: Partial State Preservation

Faulty Process = Restarted Process

@ Reinitialized

——

Discarded

——r Preserved
v\ -
v

Reloaded
executable
Image

Kernel preserve_exec()

Zero-copy preservation
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Phoenix

 Partial Process State Preservation

 Optimistic Recovery
 Unsafe Region: efficient consistency check

 Cross-Check Validation: long-term assurance
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Optimistic Recovery

Designed to provide high chance of quick recovery

Repopulate
Default recovery: @IQ/ request

& Restart ‘CA Recover 4@ Warm up 4@
I Tl I
—

S=— L.oad persisted file
N—




Optimistic Recovery

Designed to provide high chance of quick recovery

Default recovery:

' Restart
A=

When state Is consistent
Phoenix Fast Path

Qm

—_— —_—

Fallback when inconsistent
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How to detect inconsistency?
Insight from Real-World Bug Study

Collect 64 case from 6 systems
e 50 transient-only

* Discarding transient state already give
correctness

* 8 corruption in long-lived state

* High-correlation: all happen during
modification operations

Solution: fallback on

iInconsistent write

" Consistent
B Corrupted Global
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Unsafe Region

Write portion of preservable state
in one transaCtion Transaction

—_—Gl—{ —(

Read R/W Read

Example: Network connect Data structure Request reply
Request parsing updates Stats update

Either manual marking or using Phoenix

compiler auto-instrumentation
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Unsafe Region

o Safe and effective indication of inconsistency in experiment

e However, indirect indication IS not assurance

 Background Cross-Check Validation
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Cross-Check Validation

Faulty process

fork<

Default
recovery

phx

Speculative service

new
Preserved req
Preserved

CrosSsS

Reference State

)

check

Background validation
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Cross-Check Validation

If cross-check matches

Speculative service

Preserved ,f’eec‘q’v - Continue

Preserved

- Exit

Background validation

Availability gain from Phoenix restart!
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Cross-Check Validation

Speculative service

Preserved

new
req

If cross-check differs

- Exit

Preserved

Reference State

Background validation

- Continues
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Cross-Check Validation

Before fault Speculation  After cross-check
P Pr——

Timeline:

B Long-term Correctness
Guarantee

cross check

Potential inconsistency bounded to

cross-check window
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Evaluation

* |mplemented Phoenix in Linux kernel 5.15
* Ported 6 applications without knowing the bugs

* We try to answer questions:

» Effectiveness: How much availability improvement does Phoenix achieve?

 Correctness: Does Phoenix recover correctly?

 Effort: What effort and overhead are required to employ Phoenix®?
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Ported Applications

App Preserved States Codebase LoC Changes
Redis In-mem KV hash table 140,996 348 (0.25%)
LevelDB Skiplist memory tables 21,192 312 (1.50%)
Varnish Web page cache objects 109,564 281 (0.26%)
Squid Web page cache objects 186,219 190 (0.10%)
XGBoost Gradients and model 38,906 158 (0.41%)
VPIC Particles and physical fields 44,773 272 (0.61%)

Only moderate usage efforts




Availability

Reproduce 17 real-world bugs from various categories.

Compare between 4 setups Performance

 None: Original application without persistence

Al
* All: Whole process checkpointing (CRIU)

 Builtin: Application default recovery method

e Phoenix: Phoenix with Builtin as fallback

16 recovered by Phoenix

1 fallback to default recovery

@ Phoenix

‘Buntln

None

Correctness
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Availability

Time to Recover to 90% of Effective Availability

= Hitrate fo cache, troughteut forothers.

B Nothing 2 Builtin All o Phoenix

Recovery Time
(log scale)

1000

Similar time for fallback
A//

N N BN S

N 50\\)\6

100

10

gt

Quickly restore performance to pre-

restart 25




Correctness: Large Scale Injection
Only Unsafe Region

Total: 4,000 runs

Phoenix
Fast Path 3,287 successful Phoenix
_ / recovery
VY |
82% fast path taken
‘g \ 662 unsafe region caught
Fallback

| 51 faulty restart caught
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Correctness: Large Scale Injection

Cross-Check Mode
Total: 400 runs

Phoenix 325 successful Phoenix recovery
passing cross-check

Fast Path |
/ \ 5 cross-check early fallbacks
Fallback 4@ 65 unsafe region caught

| 5 faulty restart caught




Conclusion

> Partial state preservation
o Effectively preserves most state while discarding most faults

>  Optimistic recovery

* High avallability with long-term correctness guarantee

» New OS-level mechanism Phoenix

» Significant availability and performance improvements

@ https://github.com/OrderLab/phoenix
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https://github.com/OrderLab/phoenix

