
Performance Regression Testing
Target Prioritization via

Performance Risk Analysis

Peng Huang, Xiao Ma, Dongcai Shen, Yuanyuan Zhou

University of California, San Diego

University of Illinois at Urbana-Champaign

http://cseweb.ucsd.edu/~peh003/perfscope

http://cseweb.ucsd.edu/~peh003/perfscope

Trend #1: Software evolving fast

*: data from

www.ohloh.net

Lines of code for MySQL over past 10 years grew from
~5 million to ~13 million!

0

2

4

6

8

10

12

14

Li
n

es
 o

f
co

d
e

(i
n

 m
ill

io
n

s)

Date

Trend #1: Software evolving fast

Software Avg. Rev. Per
Day

MySQL ~27

Chrome ~155

Linux ~170

The average revision rate can be ≥ 100 commits per day!

0
2
4
6
8

10
12
14

Trend #1: Software evolving fast

Softwar
e

Avg. Rev. Per
Day

MySQL ~27

Chrome ~155

Linux ~170

0
2
4
6
8

10
12
14

Broken functionality or
worse performance!

Trend #2: Performance testing,
important but slow…

…

Performance critical software

Upgrading MySQL 4.1 to 5.0 in a production e-
commerce website:

Although this is a performance issue, total page rendering
time in my web shop would increase from 1 second to 20
seconds for example if showing a decent amount of products
and prices on the same page. Therefore MySQL 5 is no good for
production until this bug is fixed.

“

”

Trend #2: Performance testing,
important but slow…

Performance regression testing benchmark

Category Test Suite

Web
Server

autobench,Web
Polygraph,SPECweb

Database pgbench,sysbench,DBT2

Compiler CP2K,Polyhedron,SPEC CPU

OS lmbench,Phoronix Test Suite

Performance critical software

Trend #2: Performance testing,
important but slow…

…

Performance regression testing cost

Category Test Suite Per Run Cost

Web
Server

autobench,Web
Polygraph,SPECweb

3min—1hr

Database pgbench,sysbench,DBT2 10min—3hrs

Compiler CP2K,Polyhedron,SPEC CPU 1hr—20hrs

OS lmbench,Phoronix Test Suite 2hrs—24hrs

Problem: Catch me (perf. regression) if
you can!

Software Perf. Testing
Freq.

MySQL every release

Chrome every 4 rev.

Linux every week

r2
0

r2
1

r2
2

r2
3

r2
4

r2
5

r2
6

r2
7

r2
8

r2
9

r3
0

perf. testing #6: pass perf. testing #7: fail

Which commit introduced the perf. regression?

Doing [performance testing] between just

release kernels means that there will be a two-

month lag between telling developers that

something pissed up performance. Doing it every

day (or at least a couple of times a week) will be

much more interesting. [. . .] Two months (or half

a year) later, and we have absolutely no idea what

might have caused a regression. For example, that

2.6.2->2.6.8 change obviously makes pretty much

any developer just go : I’ve got no clue.

-- Linus Torvalds

Current practices of perf. regression
testing

• Aggregate testing
• Daily, weekly, per-release

• Prioritize test cases
• Divide based on comprehensiveness and overhead

• Multiple levels

Our tool—PerfScope—in a nutshell

• Prioritize perf. regression testing target with
Performance Risk Analysis
• Statically examine a code commit

• Conduct performance risk analysis

• Lightweight, white-box

• NOT a performance bug detection tool

Our tool—PerfScope—in a nutshell

• Prioritize perf. regression testing target with
Performance Risk Analysis
• Statically examine a code commit

• Conduct performance risk analysis

• Lightweight, white-box

• NOT a performance bug detection tool

Outline

• Understanding real world performance regression
issues

• Performance risk analysis design

• Implementation: PerfScope

• Evaluation

• Conclusion

Performance regression study

• What do real world performance regression issues
look like?

• Is there opportunity to statically analyze the
performance impact of code change?

• If so, based on the real world issues, what static
analysis is needed?

Study subjects

Software Description # of issues

MySQL DBMS 50

PostgreSQL DBMS 25

Chrome Web Browser 25

Studied software of real world performance
regression issues

Categorizing problematic code changes

Foo()

{

…

do_add;

do_add;

do_add;

…

}

Performance Performance
regression

Cost of do_add

Execution frequency of do_add

Where the problematic change takes
place?

Location of problematic code change MySQL PostgreSQL Chrome

API (e.g., ExecuteDataset) 5 (10%) 0 (0%) 1 (4%)

Utility function (e.g., mutex_spin_wait) 9 (18%) 4 (16%) 1 (4%)

Routine function (e.g., MySQLParse) 7 (14%) 4 (16%) 8 (32%)

Loop 12 (24%) 8 (32%) 4 (16%)

Others 17 (34%) 9 (36%) 11 (44%)

Location of problematic code change MySQL PostgreSQL Chrome

API (e.g., ExecuteDataset) 5 (10%) 0 (0%) 1 (4%)

Utility function (e.g., mutex_spin_wait) 9 (18%) 4 (16%) 1 (4%)

Routine function (e.g., MySQLParse) 7 (14%) 4 (16%) 8 (32%)

Loop 12 (24%) 8 (32%) 4 (16%)

Others 17 (34%) 9 (36%) 11 (44%)

Where the problematic change takes
place?

What the problematic change
modifies?

Modified program elements MySQL PostgreSQL Chrome

Expensive function call 21 (42%) 9 (36%) 16 (64%)

Performance sensitive condition 8 (16%) 6 (24%) 4 (16%)

Performance critical variable 6 (12%) 5 (20%) 2 (8%)

Others 15 (30%) 5 (20%) 3 (12%)

Modified program elements MySQL PostgreSQL Chrome

Expensive function call 21 (42%) 9 (36%) 16 (64%)

Performance sensitive condition 8 (16%) 6 (24%) 4 (16%)

Performance critical variable 6 (12%) 5 (20%) 2 (8%)

Others 15 (30%) 5 (20%) 3 (12%)

What the problematic change
modifies?

Performance sensitive condition

Modified program elements MySQL PostgreSQL Chrome

Expensive function call 21 (42%) 9 (36%) 16 (64%)

Performance sensitive condition 8 (16%) 6 (24%) 4 (16%)

Performance critical variable 6 (12%) 5 (20%) 2 (8%)

Others 15 (30%) 5 (20%) 3 (12%)

What the problematic change
modifies?

Performance critical variable

How a change impacts performance?

Type of performance impact MySQL PostgreSQL Chrome

Direct 34 (68%) 11 (44%) 12 (48%)

Indirect

Via function return value 7 (14%) 7 (28%) 3 (12%)

Via function parameter 5 (10%) 4 (16%) 1 (4%)

Via class member 1 (2%) 1 (4%) 3 (12%)

Via global variable 1 (2%) 0 (0%) 1 (4%)

Others 2 (4%) 2 (8%) 5 (20%)

Outline

• Understanding real world performance regression
issues

• Performance risk analysis design

• Implementation: PerfScope

• Evaluation

• Conclusion

Performance Risk Analysis (PRA)

• Goal: statically analyze code change’s risk in
incurring performance regression

• Two pieces of information:
 Cost of changed operation

 Execution frequency of changed operation

Static cost model

class CostModel {

protected:

virtual unsigned getArithmeticInstrCost(…);

virtual unsigned getMemoryOpCost(…);

virtual unsigned getCallCost(…);

…

public:

virtual unsigned getInstructionCost(…);

virtual unsigned getBasicBlockCost(…);

virtual unsigned getLoopCost(…);

virtual unsigned getFunctionCost(…);

}

Static cost model

class CostModel {

protected:

virtual unsigned getArithmeticInstrCost(…);

virtual unsigned getMemoryOpCost(…);

virtual unsigned getCallCost(…);

…

public:

virtual unsigned getInstructionCost(…);

virtual unsigned getBasicBlockCost(…);

virtual unsigned getLoopCost(…);

virtual unsigned getFunctionCost(…);

}

Execution frequency estimation

• Static loop iteration count estimation
• If cannot determine -> frequent

• Recursive function -> frequent

• Inter-procedural

Risk matrix

Cost
Frequency

Frequent Normal Rare

Expensive Extreme High Moderate

Normal High Moderate Low

Minor Moderate Low Low

Performance risk matrix given cost and frequency information

Outline

• Understanding real world performance regression
issues

• Performance risk analysis design

• Implementation: PerfScope

• Evaluation

• Conclusion

PerfScope architecture

PerfScope

• On top of LLVM infrastructure

• Currently support C/C++

• Open sourced in
http://cseweb.ucsd.edu/~peh003/perfscope

http://cseweb.ucsd.edu/~peh003/perfscope

Outline

• Understanding real world performance regression
issues

• Performance risk analysis design

• Implementation: PerfScope

• Evaluation

• Conclusion

Evaluation on studied perf. regression
commits

Software
Problematic

Commits
Recommended

MySQL 39 35

PostgreSQL 25 23

Total 64 58 (91%)

Evaluation on new perf. regression
commits

• 600 new commits from 6 popular, large-scale
software

• Obtained “ground truth” by running standard perf.
testing suite

Software LOC Studied?

MySQL 1.2M Yes

PostgreSQL 651K Yes

GCC 4.6M No

V8 680K No

Squid 751K No

Apache 220K No

Evaluation on new perf. regression
commits

Software
Test

Commits
Risky

Commits
Recommended

(Reduction)
Miss

(Coverage)

MySQL 100 9 22 (78%) 1

PostgreSQL 100 6 16 (84%) 0

GCC 100 6 19 (81%) 0

V8 100 7 17 (83%) 1

Squid 100 5 12 (88%) 0

Apache 100 6 14 (86%) 0

Total 600 39 100 (83%) 2 (95%)

PerfScope can reduce at least 78% of the performance regression

testing candidates and is still able to alarm 95% of the risky ones.

Running time of PerfScope

Software LOC
Analysis Time

(Seconds)

MySQL 1.2M 235

PostgreSQL 651K 194

GCC 4.6M 289

V8 680K 344

Squid 751K 34

Apache 220K 9

Outline

• Understanding real world performance regression
issues

• Performance risk analysis design

• Implementation: PerfScope

• Evaluation

• Conclusion

Limitations and future work

• Cost modeling is simple

• No offsetting for delete/replace changes

• Mainly for CPU cost
• Can be extended for I/O

• Combine with perf. test case prioritization
• Already know which code region is risky, associate with

coverage information.

37

Conclusion

• Software evolves fast that can inevitably worsen perf..

• Performance testing is an effective way to catch
performance regression but it is costly.

• We propose performance risk analysis to prioritize
performance testing target.

• Evaluation shows our tool is light-weight and effective
in recommending performance-risky commits

• http://cseweb.ucsd.edu/~peh003/perfscope

38

http://cseweb.ucsd.edu/~peh003/perfscope

Thanks!

The authors are unable to attend the conference and do Q&A

due to Visa issues 
If you have any questions, please reach Peng at
ryanhuang@cs.ucsd.edu

mailto:ryanhuang@cs.ucsd.edu

