Pushing Performance Isolation
Boundaries into Application with pBox

Yigong Hu, Gonggi Huang, Ryan Huang

M

JOHNS HOPKINS

UNIVERSITY

UNIVERSITY OF
MICHIGAN

SOSP’23

Performance Isolation Is Critical in Application

4)

Inter-application
performance interference

———————————————————————————

Shared Resource

Intra-application Performance Interference

* Performance interference can happen inside application
o Tasks in same application contend for shared application virtual resources
o Cause severe performance interference in production

Request1l Request?2

Applicatioh

{

Y g

\buffer queue Index/

400

Query per second
N
o
o

Intra-app Interference Example

-

\MySQL

[

Continuous
write queries

J

~

PSRN

0 20

40
Times(s)

60

80

Intra-app Interference Example
/ Long rea Continuous \
G e

=

0 20 40 60
Times(s)

400

Query per second
N
o
o

Intra-app Interference Example

Transaction write queries

thread

/ Long rea Continuous Purge \
E e e R

AN
pwsou wooes[[[][]

—,

J

. Purge thread
: triggered

TN

/ : 4X
Long read i throughput
transaction join I decreases
!
! [rreseennnans —
! !
20 40 60

Times(s)

4

80

Intra-app Interference Is Prevalent

MySQL performance implications of InnoDB isolation modes

snuary 14 Peter Zaitsev

Over the past few months I've written o couple of posts about dangerous debt of
[21 Jan 2015 14:34] MySQL Verification Team

This is a very well known bottleneck that required changes in current design. The new design has been described in several WorkLog entries for the

purpose.
It will requi@ a new UNDO log design to get fixed.)urge will need to skip the blocking transaction and delete the UNDO entries that are no
longer needed. It is ¢ . entries, like 5742.

In progress INSERT wrecks plans on table

Lists:pgsql-hackerspgsql-performance

From: Mark Kirkwood <mark(dot)kirkwood(at)catalyst(dot)net(dot)nz>

To: "pgsql-performance(at)postgresql(dot)org” <pgsql-performance(at)postgresql(dot)org>
Subject: In progress INSERT wrecks plans on table

Date: 2013-04-26 02:33:31

GossageDo1795 solved in various ways. I don't see much that Postgres can do because
Lists: pgsg- 1t can't know ahead of time you're about to load rows. We could
Recently we enco 1Magine an optimizer that set thresholds on plans that caused the
whole plan t culated half way thru a run, but that would be a
<Jot of work to design and implemen®>and even harder to test. Having
static plans at Ieast allows us to discuss what it does after the fact
with some ease.

Intra-app Interference Is Long-lived

N PERCONA Solutions Nesturces - Commumity « Abowt ~

Mess with innodb_thread _concurrency

2006

. Database Administrators

2014 aEssssEEEEEEEEEEEEEEEEE Hyperthreading & MySQL InnoDB Thread Concurrency Performance

§ 4Q

@ Questions |

. Database Administrators

2017 (5_ asEsEEEEsEEEEEEEEEEEEE". What are the right ways to analyse and tune up innodb_thread_concurrency in
mysql 5.7?
© Questicns g

} Deprecate and ignore options for InnoDB concurrency throttling
EEEEEEEEEEEEEEEEEEEEEEER

2020 (

¥ Details

Ok [Goso I8

Current Practice of Performance Isolation

Practice 1: performance isolation by partitioning hardware resource

Application

4)

Application

Current Practice of Performance Isolation

Practice 1: performance isolation by partitioning hardware resource

Application

Application

Problems:

 Application virtual resource is invisible to OS

* Allocating hardware resource can’t directly affect
application resource contention

Current Practice of Performance Isolation

Practice 2: fine-grained resource quota

§

§

_ § g/

Current Practice of Performance Isolation

Practice 2: fine-grained resource quota

Application
\ Solutions:

« Assign Fixed resource guota
« Trace application tasks’ resource usage
« Deny excessive resource usage

Problems:
« Resource usage is shifting
« Hard to set quota statically

Issues of Current Practice

Difficult to enforce Isolation inside applications

Invisible to diverse application-level virtual resources

Insufficient and inflexible to enforce resource guota

Our Solution — pBox

Difficult to enforce isolation inside applications

— Let developers define performance isolation domain in application

Invisible to diverse application-level virtual resources

— EXpose set of APIs to easily trace application resource usage

Insufficient and inflexible to enforce resource quota

— Design mechanism to detect and mitigate intra-app interference

10

Key Behavior of Intra-app Interference

. oc N

Application
Kernel

Key Behavior of Intra-app Interference

Insight: make the OS aware of virtual resource contention

4 A

Application

Kernel

Resource Management / »

Performance Box

Design goal: monitor application resource contention and expose to Kernel

/ r ininininky 1 \
| :
: !
pBox : : pBox
| |
| |
| |
| |
| |
| |
L ol
Application
Kernel

Resource Management

\ |

12

Performance Box

Design goal: monitor application resource contention and expose to Kernel

[L
I I
' l
I
pBox : : pBox
I I
I I
I I
I I
I I
I I
I— ol
Application
______________________ K e o o o e
Kernel
[pBox Manager]
&\
=2

Resource Management

r S
(77" T

pBox APIs

1. Easily define the isolation boundary by developers

2. Automatically enforce performance isolation among pBox

int create_pbox(IsolationRule rule);

Create int release_pbox(IsolationRule rule);
Activat int activate_pbox(int psid) ;

clivaie int freeze_pbox(int psid);

Trace int update_pbox(size key, event_type event);

13

pBox Creation

void add_connection(THD *thd) {

While (thd _connection alive(thd)) {
if (do_command(thd))
break; Loop to handle all requests from one client
end_connection(thd); _//f
}

close _connection(thd);

¥

Example: MySQL thread handler for a client connection

pBox Creation

void add_connection(THD *thd) {

¥

rule = { .type = RELATIVE, .isolation_level = 50 };
psid = create_pbox(rule);

While (thd _connection alive(thd)) {
if (do_command(thd))

break; Loop to handle all requests from one client

end_connection(thd); _//¢
}

close _connection(thd);
release pbox(psid);

15

pBox Creation

void add_connection(THD *thd) {

rule = { .type = RELATIVE, .isolation_level = 50 };

psid = create_pbox(rule); - __Isolation

rule
While (thd_connection_alive(thd)) {
if (do_command(thd))
break; Loop to handle all requests from one client

end_connection(thd); _//f
}

close _connection(thd);
release pbox(psid);

¥

Handle one request

Example: MySQL thread handler for a client connection

15

Define pBox Isolation Area

bool do _command(THD *thd) {

command = thd->net.read pos[@];
ret = dispatch_command(command, thd, ...);

Example: MySQL thread handler for a client connection

Define pBox Isolation Area

bool do _command(THD *thd) {

command = thd- > net.read pos[0];
psid = get_current_pbox();

activate pbox(psid);
ret = dispatch_command(command, thd, ...);
freeze pbox(psid);

17

Define pBox Isolation Area

bool do _command(THD *thd) {

command = thd- > net.read pos[0];
psid = get_current_pbox();

Additional code to filter out requests
activate_pbox(psid); from pBox’s isolation area

ret = dispatch _command(command, thd, ...);
freeze pbox(psid);

Example: MySQL thread handler for a client connection

17

pBox APIs for Thread Pool Model

APl: int bind pbox(size t key, unbind flags flags)
int unbind pbox(size t key, unbind flags flags)

Functions to transfer the ownership of pBox:

* bind pbox finds the pBox from the key and binds it with the current thread
 unbind pbox detaches the pBox from current thread

* Detach/attach to thread when the task is detached/attached from thread pool

How to Trace Application Resource

* Require developer to expose resource usage
o High overhead to inform every changes of resource

e (Observation:

o two key questions for performance interference: which activity is
causing delay and which one is deferred

o But we also need to adapt different resource implementation, variable
types and resource use pattern

 OQOur approach:
o A new concept, state event, to capture key application resources event

State Event

PREPARE A pBox is derferred by an application resource
ENTER A pBox is no longer derferred by an application resource
HOLD A pBox is holding an application resource

UNHOLD A pBox releases an application resource

APl: int update pbox(size t key, event type event)

20

Defer time

victim pBox

noisy pBox

Tracing Deferring Time by State Event

Holding time

21

§

ENTER

B HOLD

Shared
Resource

B PREPARE
B UNHOLD

Tracing Deferring Time by State Event

victim pBox

Defer time

noisy pBox

Holding time

21

§

ENTER

B HOLD

Shared
Resource

B PREPARE
B UNHOLD

Tracing Deferring Time by State Event

Defer time

victim pBox

noisy pBox

Holding time

21

§

ENTER

B HOLD

Shared
Resource

B PREPARE
B UNHOLD

Tracing Deferring Time by State Event

Defer time

victim pBox

noisy pBox

Holding time

21

;
$

ENTER

B HOLD

Shared
Resource

B PREPARE
B UNHOLD

Detecting Performance Interference for Activity

* State event only trace deferring time on resource level

o Resource level interference # end-to-end performance interference
o No priori knowledge of future resource usage and interference level

Activities' Interference Level

: Resource A Resource B
pBox | SO f.~

I

Defer time = enter, - prep, + enterg-prepg

Defer time

Interference level =
/ Execution time — Defer time

N INN DN NN IEE INE IS e ElE .

<€

Worse-case analysis: if current Interference level is larger

B PREPARE than isolation goal, it’s time to take action

ENTER

B HOLD
B UNHOLD

23

Competitor Map + Holder Map

Resource
A
Competitor map Holder map
Resource Resource
c C
I PREPARE
ENTER
B HOLD

B UNHOLD »

Competitor Map + Holder Map

Resource
A

Resource
B

Resource
C

pBox B —| pBox C

Competitor map

Resource
C

I PREPARE
ENTER

I HOLD
B UNHOLD 24

Competitor Map + Holder Map

Resource
A

Resource
B

Resource
C

pBox B —| pBox C

Competitor map

€==————

v

Interference level > isolation goal?

Resource
C

I PREPARE
ENTER

I HOLD
B UNHOLD 24

Competitor Map + Holder Map

Competitor map

I PREPARE
ENTER

B HOLD
B UNHOLD

Resource
A

Resource
B

Resource
C

pBox B —| pBox C

Holder map

————>

€==————

v

Interference level > isolation goal?

Resource
B

Resource
C

24

Interference Mitigation

Reallocating application resource can introduce dangerous side
effects to application

Mitigating interference without breaking application logic
o Adding a delay to noisy activity
o Only penalize the noisy pBox when a UNHOLD event is received

Handle nest state events
o A noisy pBox can hold multiple resources
o Only penalize when pBox no longer holds any application resource

Score-based Penalty Length Adjustment

* Forirounds of penalty, we calculate victim pbox

average deferring time

OSi=

average exeution time

score + 1; if s(i+ 1) > s(i)
o Penaltyeffectiveness Score =< score —1; if s(i+ 1) < s(i) and score > 1
1;if s(i+ 1) <s(i) and score =1

o Next penalty length = current length X (1 + score)

Check paper for details

Other Optimization

* Lightweight Tracing
o Pre-allocation for frequently used data struct to reduce the need for
additional memory calls
o Reduce the number of syscalls like update pbox
o Optimizing the datastruct

* Lazy unbind
o unbind_pbox only marks a pbox as detached from thread
o only detach when bind_pbox bind the pbox to a different thread

Evaluation

 Can pBox reduce intra-application interference?

« How does pBox compare to state-of-art solutions?

e What is the overhead?

Experiment Setup

Implemented in Linux kernel 5.4.1 with a user-level library

A Static analyzer to find the state event

Ported to five systems
o MySQL, PostgreSQL, Apache, Varnish, Memcached

m SLOC SLOC Added Inspected Functions

MySQL 1.74M

PostgreSQL 629K 127 71
Apache 198K 71 43
Varnish 59K 77 53

Memcached 19K 70 22

Microbenchmark

e Test latency of pbox APIs compared with get pid

100000

22491
10000 8782 N
2877
)
£ 1000 421 458 458 495 3c4 525 411
5 _____
(e
9 100
©
—
10
1
<@ & <@ Nz . Qb O N ,{j O @
> > R Q >
& S F T & E
< rb(’ O O O %
QQ QQ ’bb/
&
Q&‘S‘

updatel* update_pbox under no interference
update2* update_pbox under interference

Real-world intra-app interference cases
D Application __ ContendingResource Description

C1 table Write query blocked by long update query

C2 global mutex Inserting query on table without primary key has contention
C3 MySQL tickets Query blocked on innodb thread concurrency

Cca transaction history length SERIALIZABLE isolation causes overhead to read query
C5 UNDO log Background purge task blocks client request

C6 index search tree In-progress INSERT delayes other queries

C7 database table Long update query blocks other requests

C8 PostgreSQL database table buffer content lock contention on SHARED lock

Cc9 dead table rows Vacuum full process blocks other requests

C10 write-ahead log A large WAL blocks requests

C11 fcgid request queue slow request in mod_fcgid blocks other fast connections
C12 Apache apache thread pools Apache locks server if reaching maxclient

C13 php thread pool Apache server slows due to contention on php connection
Cl4 _ varnish thread pool Slow request on visiting big objects block other request
C15 varnish system lock lock contention with high number of thread pools
Cl6 Memcached system lock lock contention in the cache replacement

Performance Interference Reduction

TInterference —Tsolution

Reduction Ratio =

T -T
nterference Normal . 0
f pBox: 86%
110%
90%
70%
50%
30%
10%
I
-10%
cl c2 c3 c4 c5 c6 c7 c8 c9 cl0 cli cl2 cl3 cla c15 cl6

W pbox

Performance Interference Reduction

Number of case improved:
pBox (15/16) ; cgroup(3/16); PARTIES(3/16); Retro(5/16); DARC(3/16)

N | 1NN |
.| ||||. I III|| "'||||I"""

-100%
-200%
-300%
-400%
-500%

cl c2 c3 c4 c5 c6 c7 c8 c9 cl10 cll cl2 cl13 cla cl5 cl6

MW pbox Mcgroup M Parties W Retro M PSP 33

pBox Overhead

Read-intensive workload:

B MySQL ™ PostgreSQL ™ Apache ®Varnish ™ Memcached

1 16 32

of threads

6%

4

X

2

Overhead
N

0

X

64

Write-intensive workload:

B MySQL m PostgreSQL ™ Memcached

= =l

1 16 32 64
of threads

6%
4%
2%
0%
-2%

Overhead

34

Conclusion

Intra-application performance interference is difficult to mitigate

Performance isolation needs to be enforced inside application

pBox, an abstraction to push performance isolation into application
Make OS aware of application resource usage

pBox mitigate 15/16 interference cases with a 86% reduction ratio

Question List: Motivation

Why design pBox in kernel? Or Why pBox should be a OS abstraction

How does pBox deal with micro-second level activity

Question List: Design

How many manually effort to insert state event
How does developer know the correctness of instrumentation

Does pBox need a dedicate core? If so, what is the overhead
Would pBox make wrong penalty decision
Would pBox take penalty too late

How does pBox support event driven

Question List: Evaluation

It is unclear how pBox behaves for intra-application interference

What will happen if pBox policy make wrong decision

Is there any parameter in pBox

Why you only test on 15 cases

Static analyzer

S Inspected State Events SLOC
oftware ¥

Functions Manual Detected Added
MySQL 83 57 40 (70%) 192
PostgreSQL 71 40 44 (110%) 127
Apache 43 12 8 (66%) 71
Varnish 53 16 12 (75%) V0
Memcached 22 14 12 (85%) 70

Table 5. Functions we inspected to use pBox, state events we manually
found to add update_pbox calls, and total SLOC added to the app
code. Detected is the number of state events found by our analyzer.

Effectiveness of Different Penalty Length

cl c3 c4 c5 c6 c7 c8 c9 cl0

W Fixed_10 M Fixed_100 M adaptive

120%

100%

80

X

609

X

40

SN

209

X

00

X

40

Actions

Steps to
Converge

Penalty

NN

ouiouion
1

Bl score-based

- -

o O
— N
] 1

[
o
o

| gap-based

c4

¢S 7' 8 9
Case

cl0

41

- = - = e
O 100% & - <= e -
+J —~— D e — he— - =
© — " :
; 750/0 g At oy + Sl
Q
= [= €2 —— 7 €10 _
0 - e
g:) 25% ’ R o e S —
{ —&— c4
0% - - ' ' :
25% 50% 75% 100% 125%

Isolation Rule
Figure 15. Interference reduction ratios for ten cases under different
isolation rules from 25% to 125%. The default is 50%.

42

How to Find State Event

 Manually instrumenting all state events in code base
o To much domain knowledge
o A lot of resource -> waste time
o Instrumentation can be error-prone

Notify State Event to pBox Manager

void srv_enter _innodb() {
for(s;) {
if(srv_conc.n_active < thread_concurrency) {
n_active = os_atomic_inc(&srv_conc.n _active);

if(n_active <= thread concurrency) { . .
srv_enter innodb with tickets(trx); get the thread tickets, enter innodb

return;

}
}

os_thread_sleep(sleep_in_us); w3 no thread tickets, block itself
}

}

void srv_exit _innodb() {

os_atomic_dec(&srv_conc.n_active, 1);

Notify State Event to pBox Manager

void srv_enter _innodb() {
update_pbox(&srv_conc.n _active, PREPARE);

for(55) {
if(srv_conc.n_active < thread_concurrency) {
n_active = os_atomic_inc(&srv_conc.n_active;:___-\\\\v
update_pbox(&srv_conc.n_active, HOLD); get the thread tickets, enter innodb
if(n_active thread_concurrency) {

update_pbox(&srv_conc.n_active, ENTER);
srv_enter_innodb_with tickets(trx);
return;

}
} .
} os_thread_sleep(sleep_in_us); 3 no thread tickets, block itself
}

void srv_exit _innodb() {
os_atomic_dec(&srv_conc.n_active, 1);
update pbox(&srv_conc.n _active, UNHOLD);

} 45

Compiler Support

void srv_enter _innodb() {

* Locate the resource variable
for(;) {
if(srv_conc.n_active < thread concurrency) {
n_active = os_atomic_inc(&srv_conc.n_active);
if(n_active <= thread _concurrency) {
srv_enter_innodb with tickets(trx);

o _ return;
o Check the conditional variable }

}

os_thread sleep(sleep in_us);

}
-

o Find block function

o Find the loop that uses block function

void srv_exit innodb() {

os_atomic_dec(&srv_conc.n active, 1);

e |ocate the resource variable

Compiler Support

void srv_enter _innodb() {

for(;5) {
o Find block function if(srv_conc.n_active < thread concurrency) {
n_active = os_atomic_inc(&srv_conc.n_active);
, . if(n_active <= thread _concurrency) {
o Find the loop that uses block function srv_enter innodb with tickets(trx);
- _ return;
o Check the conditional variable }
}
. . . os thread sleep(sleep in us);
* Locate the inserting point y ~sleep(sleep_in_us)
o Find the hold operation for conditional }
variable
void srv_exit _innodb() {
o Find the unhold operation for conditional

_ os_atomic_dec(&srv_conc.n _active, 1);
variable

