
Operating System Support for Safe
and Efficient Auxiliary Execution

Yuzhuo Jing, Peng Huang

Johns Hopkins University

OSDI ’22

Auxiliary tasks increasingly common

Deadlock detector RDB checkpointing Autovacuum

Auxiliary tasks are not part of core business logic
but important for app reliability and performance

2

Fault detection Recovery Resource management

Typical characteristics of auxiliary tasks

3

1. Regularly invoked, often long-running

2. Read main program’s latest state

3. Perform inspection work

4. Take some actions

5. Optionally modify main program state

…

Current practice of auxiliary execution

💥

💥

Problems:

• Unsafe: a bug in auxiliary task can
bring down the entire program

• A heavy task can cause severe
performance interference

Practice 1: running in the same address space

Application

4

Current practice of auxiliary execution

forked process

Can’t observe latest
program states

Unable to modify

Practice 2: running in another process using fork

Application

5

Ideal auxiliary execution

6

Observability

Isolation
process (fork)-
based execution

thread-based
execution

strong

high

desired

Essential problem:

Current OS abstractions force developers to
choose one property over another

process+shared
memory

process+RPC

A missing sub-process isolation scenario

Application

3. Maintenance

2. Secure partition
Wedge (HotOS ’13),

lwC (OSDI ’16)

1. Extensibility

SFI (SOSP ’93)

under-explored

7

Our focus!

(most auxiliary tasks)

main

Our Solution: Orbit
• An OS abstraction for auxiliary tasks

• Properties:

Strong isolation buggy orbit task will not affect main program

Observability easily observe main program states

Safe alteration alter main program states safely

Efficiency low overhead even under high frequency

First-class entity schedulable like process & threads

8

Key Challenges

1. Isolation and observability are “contradictory”

• Something isolated typically cannot see updated information

2. Isolation comes at a cost

• Possible technique like shared memory is efficient but against isolation

9

Insights

1. Separate address spaces are essential but we
can continuously mirror them

2. State observed in each invocation is typically only
a small portion of all state

10

Overview of using orbit

1. Directly in the same application codebase

2. Easily refer to any existing variables and functions

11

Create

Invoke

Alter

orbit *orbit_create(orbit_entry entry, ...);

long orbit_call(orbit *ob, ...);

orbit_future *orbit_call_async(orbit *ob, ...);

long pull_orbit(orbit_future *f, ...);

long orbit_push(orbit_update *update, ...);

 int mysqld_main() {

 }

 lock_t* RecLock::lock_alloc(trx_t* trx) {
 lock_t* lock;
 lock = (lock_t*) mem_heap_alloc(heap, sizeof(*lock));
 return lock;
 }

 dberr_t lock_rec_lock() {
 if (status == LOCK_REC_FAIL) {
 check_and_resolve(lock, m_trx);
 }
 }

Orbit creation

Example: MySQL deadlock detector code 12

+ struct orbit *ob;
 int mysqld_main() {
+ ob = orbit_create("dl_checker", check_and_resolve, NULL);
 }

 lock_t* RecLock::lock_alloc(trx_t* trx) {
 lock_t* lock;
 lock = (lock_t*) mem_heap_alloc(heap, sizeof(*lock));
 return lock;
 }

 dberr_t lock_rec_lock() {
 if (status == LOCK_REC_FAIL) {
 check_and_resolve(lock, m_trx);
 }
 }

Orbit creation

Example: MySQL deadlock detector code 13

orbit
handle

Orbit creation
orbit *orbit_create(const char *name, orbit_entry entry,
 void* (*init)(void));

API:

A function in app code representing the entry of an auxiliary task

Similar to pthread_create() but key differences:

• Executes in a different address space

• Created once but not immediately executed

• Invoked multiple times later
14

Orbit creation
Application

Orbit B

orbit_create()

orbit_create()
Orbit A

Main
entry_func1

entry_func2

Initial orbit is kept minimum (mostly code pages)
15

Automatic state synchronization

MirrorMemory 
View

{ variables needed
by orbit task
problem: variables
are scattered
solution: coalesce
into orbit area

Mirror

Orbit A Orbit BMain

Orbit’s memory is mirror of main program’s fragments (at the same virtual address)

16

Automatic state synchronization

MirrorMemory 
View

Mirror

Orbit A Orbit BMain

{ variables needed
by orbit task
problem: variables
are scattered
solution: coalesce
into orbit area

Orbit’s memory is mirror of main program’s fragments (at the same virtual address)

17

Orbit area
 struct orbit *ob;
+ struct orbit_area *area;
 int mysqld_main() {
 ob = orbit_create("dl_checker", check_and_resolve, NULL);
+ area = orbit_area_create(4096);
 }
 lock_t* RecLock::lock_alloc(trx_t* trx) {
 lock_t* lock;
- lock = (lock_t*) mem_heap_alloc(heap, sizeof(*lock));
+ lock = (lock_t*) orbit_alloc(area, sizeof(*lock));
 return lock;
 }

Example: MySQL deadlock detector code 18

Compiler support

• Analyze the allocation points used by
the orbit task

• Output hints of allocation points

• Static analysis using def-use chain

struct trx_t {
 int *a;
};
void modify(struct trx_t *t) {
 t->a = (int*)malloc(sizeof(int));
 *t->a = 10;
}
void check(struct trx_t *t) {
 printf("%d\n", *t->a);
}
int main() {
 struct trx_t t;
 modify(t);
 check(t);
}

19
Check the paper for details!

Orbit invocation

long orbit_call(orbit *ob, orbit_area** areas, ...);

orbit_future *orbit_call_async(...);

Make a snapshot of specified states right before the orbit call,

Sync: waits until the entry function has executed and returned

Async: returns after creating a snapshot with a handle to be waited on

20

then execute the entry function in orbit side using snapshotted state

State snapshotting
• Possible approaches:

• Data copying: slow, waste memory

• Shadow memory: weak isolation, instrumentation, high overhead

• We choose to leverage copy-on-write

• Efficiency: only copy PTEs + optimization techniques

• Consistency & concurrency: ensured by several designs

21

PTE (W)
PTE (W)
PTE (W)
Inactive

State snapshotting

Main

PTE (R)
PTE (R)
PTE (R)
Inactive

Orbit

W: writable R: read-only

Classic COW

Page
Tables Mark R/O

Copy active PTEs

to same vaddr

PTE (R)
PTE (R)
PTE (R)

orbit_call_async
only returns after
marking has done

22

orbit
area

State snapshotting

W: writable R: read-only

Scenario 1: multi-threaded application

Rely on app-level
synchronization

Possible solution: pause all threads when
snapshotting

• Significant performance penalty

Observation: the original call sites are
usually already synchronized

PTE (W)
PTE (W)
PTE (W)
PTE (W)

Main

PTE (R)
PTE (R)
PTE (R)
PTE (R)

23

orbit
area

Page
Table

PTE
array

PTE (W)
PTE (W)
PTE (W)
PTE (W)

PTE (R)
PTE (R)
PTE (R)
PTE (R)

State snapshotting

W: writable R: read-only

Scenario 2: concurrent orbit calls

Main OrbitOrbit’s FIFO queue
PTE
array

PTE
array

PTE
array

Mark & Push 
PTE array

Pop 
& Install

PTE (R)
PTE (R)
PTE (R)
PTE (R)

PTE (W)

What if main program
modified a page?

Naturally works!
Snapshots won’t change
even if main program page
has changed

serialize orbit calls

24

orbit
area

Page
Tables

Optimization

Techniques:

• Incremental snapshotting

• Delegate objects

• Dynamic page mode selection

// allocate 104 bytes with orbit_alloc
struct trx_t_delegate {
 struct {
 lock_t* wait_lock;
 } lock;
};

// allocate 912 bytes with malloc
struct trx_t {
 struct trx_lock_t {
 ...
- lock_t* wait_lock;
+ lock_t*& wait_lock;
 ...
 } lock;
};

Optimization: delegate object

Solution: separate allocation of large struct and used fields

Problem: large struct with only few fields accessed wastes orbit area memory

26

Define a delegate struct that only keeps
the fields needed

// allocate 104 bytes with orbit_alloc
struct trx_t_delegate {
 struct {
 lock_t* wait_lock;
 } lock;
};

Define a delegate struct that only keeps
the fields needed

// allocate 912 bytes with malloc
struct trx_t {
 struct trx_lock_t {
 ...
- lock_t* wait_lock;
+ lock_t*& wait_lock;
 ...
 } lock;
};

Optimization: delegate object

Solution: separate allocation of large struct and used fields

Problem: large struct with only few fields accessed wastes orbit area memory

no code changes
needed at usage point

C++ reference
binding

27

Altering main program states

• Transparently replace modified pages?

• Problem: state merge conflicts

• Controlled alteration with orbit_update

• Precise modification: byte-wise field copying

• Avoid partial updates: batched updates

28

// within orbit task
void trx_rollback(trx_t *victim) {

}

Controlled state alteration
Packing and logging modifications

Scratch
 orbit_update *scratch =
 orbit_update_create();

Create an empty update as a
scratch

29

// within orbit task
void trx_rollback(trx_t *victim) {

}

Controlled state alteration
Packing and logging modifications

Scratch
 orbit_update *scratch =
 orbit_update_create();

DATA

 orbit_update_add_data(scratch,
 &victim->version); Flexibility: allow adding arbitrary

data

• Can be made for any use

• Later in this example, version
is used for stale check

30

// within orbit task
void trx_rollback(trx_t *victim) {

}

Controlled state alteration
Packing and logging modifications

Scratch
 orbit_update *scratch =
 orbit_update_create();

DATA

 orbit_update_add_data(scratch,
 &victim->version); Precise field update

• Record memory address, value

MOD

 victim->lock.cancel = true;
 orbit_update_add_modify(scratch,
 &victim->lock.cancel, true);

31

// within orbit task
void trx_rollback(trx_t *victim) {

}

Controlled state alteration
Packing and logging modifications

Scratch
 orbit_update *scratch =
 orbit_update_create();

DATA

 orbit_update_add_data(scratch,
 &victim->version);

Flexibility: run operation

• Modification such as signaling
condvar cannot be done in orbit

• Record function and argument,
run in main program

MOD

 victim->lock.cancel = true;
 orbit_update_add_modify(scratch,
 &victim->lock.cancel, true);

OP

 orbit_update_add_operation(scratch,
 pthread_cond_signal,
 &trx->slot->condvar);

32

// within orbit task
void trx_rollback(trx_t *victim) {

}

Controlled state alteration
Packing and logging modifications

Scratch
 orbit_update *scratch =
 orbit_update_create();

DATA

 orbit_update_add_data(scratch,
 &victim->version); orbit_push: push back updates

in a batch

• Prevents partial state alteration:
crashed orbit will not push
partial updates

MOD

 victim->lock.cancel = true;
 orbit_update_add_modify(scratch,
 &victim->lock.cancel, true);

OP

 orbit_update_add_operation(scratch,
 pthread_cond_signal,
 &trx->slot->condvar);
 ...
 orbit_push(scratch);

33

Pushing back updates
Applying updates

// in main program
void handle_rollback(orbit_future *future) {

}
Main program can choose whether
to apply or to discard the updates

 TrxVersion *version = orbit_update_first(update)->data;
 if (trx_is_alive(version))
 orbit_apply(update);

 orbit_update update;
 long ret = pull_orbit(future, &update);

34

Evaluation
Setup

• Implemented orbit in Linux kernel 5.4.91

• Ported 7 tasks from 6 systems

• Implemented 1 new task

• Environment:

• KVM-enabled QEMU VM w/ 4vCPU & 10GB memory

• Debian 10 with custom kernel

35

Microbenchmark: creation

La
te

nc
y

(µ
s)

10

100

1,000

10,000

100,000

small (32 MB) medium (1G) large (8G)

53,519.45

6,859.36

294.24
115.30116.3680.51

orbit fork

Test latency of orbit_create compared with fork

464
faster

×

36

Real-world applications
App Task Source Category
MySQL #1: deadlock detector ported

Error detector
Apache

#2: lock watchdog new
#3: proxy balancer ported

Resource manager
Varnish #4: pool herder ported
Nginx #5: WebDAV PUT handler ported Functionality

Redis
#6: Slow log ported Debugging
#7: RDB persistence ported

Checkpointing
LevelDB #8: background compaction ported

37

Isolation

• 8 null pointer dereference injections in all tasks

• 4 real-world bugs reproduced

• 2 resource abuse bug injections: OOM bug + CPU hogging bug

• 1 long lock wait injection in new task (Apache lock watchdog)

All impacts are isolated to the orbit task, and
main program not affected (example next page).

38

Bug cases

Example: Apache proxy balancer seg fault

Bug #59864: Stack overflow due to
mutual fallback configuration

proxy_worker *find_route_worker(
 const char *route) {
 ...
 rworker = find_route_worker(
 worker->s->redirect);
 ...
}

int proxy_balancer_pre_request(…) {
 update = orbit_call(ob, …);
 if (is_error(update)) {
 ob = orbit_create(…);
 return HTTP_SERVICE_UNAVAILABLE;
 }
}

Orbit version

• All clients protected

• Graceful restart by checking
orbit_call value

• Meaningful error message

• Segfault makes all clients in
same worker drop connection

39

Infinite recursion

N
or

m
al

ize
d

th
pu

t

0
0.2
0.4
0.6
0.8

1

deadlock
balancer

watchdog
WebDAV

pool herder
slowlog RDB

compaction

Orbit Vanilla

Throughput overhead

Median 3.3%

Calls/s: 510.1 1128 1 1142 1 80.7 0.2 9.9

Test with YCSB, sysbench, ApacheBenchmark, YCSB, hand-written, etc.

Ensure high invocation frequency

Maximum 
10.2%

40

Th
ro

ug
hp

ut
 (Q

PS
)

0

900

1800

2700

3600

Elapsed Time (s)
20 40 60 80 100 120

orbit (safe) vanilla (unsafe) fork (safe)

Comparison with fork
MySQL deadlock detector
Tested with a user workload in a performance bug case #49047 with 8 clients

4.9% drop

84%
drop

6 faster
than fork

×
fork:

orbit:

41

Optimization: delegate object

TRX size (byte)

104

912

No optimization Delegate object

La
te

nc
y

(µ
s)

0

100

200

300

400

Throughput (QPS)
0 850 1700 2550 3400#Fault per query

6.91

11.7

Orbit area (MB)

1.0

25.7

MySQL deadlock detector

-88.6% -96.1% -40.9%

-88.5%
latency

+91.4%
throughput

42

Conclusion
‣ Auxiliary tasks increasingly common

• can cause safety and performance issues

‣ Current OS abstractions are not well-suited for aux tasks

‣ New OS abstraction Orbit

• Strong isolation, high observability, efficiency

• Evaluated on real apps & tasks

43
https://github.com/OrderLab/orbit

https://github.com/OrderLab/orbit

