Efficient Exposure of Partial Failure
Bugs in Distributed Systems with
Inferred Abstract States

Haoze Wu, Jia Pan, Peng Huang

JOHNS HOPKINS NSDI 24

UNIVERSITY

UNIVERSITY OF MICHIGAN

Failures in distributed systems

total failure !' l
clent! (all services unavailable)
client2 &:
</> follower

clien

©

fault-tolerant

[manager

crash

4117724

The problem of partial failures

[manager

client|

read

</> Q‘ﬁ‘
create
. read
client2

> .

read

follower follower

write
clientN A/vate/V
o

</>

R = a set of services provided by a
distributed system S = list of APIs

We define partial failure as:

Some R, C R fail to maintain their safety or liveness
properties, while other servicesR \ Rr behave as expected

4117724

Partial failures prevalent in production

= slack Status

Friday November 3, 2023

62 EC2 instances were impaired, Redshift hurt, and some of you may still struggle to access
your data
e OUtage A Simon Sharwood, APAC Editor Tue 28 Sep 2021 07:57 UTC
Users unable to connect to Slack or send messages
& (v (§f) (in (@ Amazon Web Services' largest region yesterday experienced an eight-hour disruption
Issue summary: with the Elastic Block Store (EBS) service that impacted several notable web sites and
On November 4, 2023, between 5:09 PM PDT and 5:20 services.

were unable send messages or to connect to Slack.

A routine code change introduced a database errg

Google Cloud Infrastructure Components Incident #20013

Google Cloud services are experiencing issues and we have an other update at 5:30 PDT

Incident began at 2020-12-14 04:07 and ended at 2020-12-14 06:23 (all times are US/Pal

DATE

@ Dec 22,2020

@ Dec 18,2020

TIME

16:49

11:37

DESCRIPTION

The following is a correction to the previously posted IS
amendment. All services that require sign-in via a Goog
Cloud service accounts experienced elevated error rate|
oauth2.googleapis.com. Impact varied based on the Clg
impacted and have further questions.

ISSUE SUMMARY

On Monday 14 December, 2020, for a duration of 47 mi
access were unavailable. Cloud Service accounts used b
apologize to our customers whose services or business|
to improve the platform’s performance and availability.!

4117724

AWS US East region endures eight-hour wobble
thanks to 'Stuck 10’ in Elastic Block Store

The lack of fun started at 8:11pm PDT on Sunday, when EBS experienced "degraded

Summary of the AWS Service Event in the Northern Virginia (US-EAST-1) Region

December 10th, 2021
We want to provide you with some additional information about the service disruption that occurred in the Northern Virginia (US-EAST-1) Region on December 7th, 2021.
Issue Summary

To explain this event, we need to share a little about the internals of the AWS network. While the majority of AWS services and all customer applications run within the main AWS
network, AWS makes use of an internal network to host foundational services including monitoring, internal DNS, authorization services, and parts of the EC2 control plane. Because of
the importance of these services in this internal network, we connect this network with multiple geographically isolated networking devices and scale the capacity of this network
significantly to ensure high availability of this network connection. These networking devices provide additional routing and network address translation that allow AWS services to
communicate between the internal network and the main AWS network. At 7:30 AM PST, an automated activity to scale capacity of one of the AWS services hosted in the main AWS
network triggered an unexpected behavior from a large number of clients inside the internal network. This resulted in a large surge of connection activity that overwhelmed the
networking devices between the internal network and the main AWS network, resulting in delays for communication between these networks. These delays increased latency and errors
for services communicating between these networks, resulting in even more connection attempts and retries. This led to persistent congestion and performance issues on the devices

connecting the two networks.

A real bug example

void serializeNode (OutputArchive oa, ...){
synchronized (node) {
scount++;
oa.writeString(pathString, "path"); Stuck due to
oa.writeRecord (node, "node"); * transient

network issue

> \
'\\\\\\\ Request

B Snapshot
. N Han?lg e ™ heartbeat ™
m
: heartbeat
5 APACHE
ZooKeeper"
§=9’
\ J N —— "/ \ %
follower leader follower

No leader re-election triggered!

4117724

Fix: make a copy
of node, serialize
data without lock

Fault injection testing is needed

Many partial failure bugs are only
triggered by rare fault events

Fault injection testing aims to
catch such bugs

- Simulate faults while exercising a system
with test workloads

An increasingly popular practice

4117724

- Randomly kill a process/VM, introduce
packet loss, simulate disk errors, etc.

OREILLY"

Chaos
Engineering

System Resiliency in Practice

Casey Rosenthal

& Nora Jones
MHE J

Chaos Monkey Jepsen

Blockade

Challenges

network delay should

occur to only these
synchronized (node) { operations
oa.writeString (pathString, "path");

ocoa.writeRecord (node, "node");

Subtle faults occurring at fine granularity

- only writes to certain files fall

Coarse-grained, black-box fault

network fault that only affects a particular connection injections are insufficient!

- microburst or transient slowness in a subset of operations

- a custom exception in a specific RPC

417124

Challenges (cont’d)

Very large injection space

(0,|1] (1,|2] (2,I3] (3,I4] (4,I5] (5,I6]
Elapsed Time (second)

- Over 1000 candidates for fault injection in 1 second
during ZooKeeper's execution

Distributed systems are by design fault-tolerant

- Most injected faults would be masked or lead to expected
behavior (e.g., abort on failure to read a critical file)

4117724

Our solution: Legolas

A fault injection testing framework for large
distributed system to expose partial failure bugs

| fine-grained, in-situ injection 2. systematic yet efficient search
customized to system code of large fault injection space
- statically instrument hooks to precisely - extract abstract state and leverage the

simulate subtle faults within a system state to compress the search space

4117724

Legolas Overview

inform
abstract states

Static

Legolas

()

I
I
I
I
I
I
I
analyzer I
| server
- o i
- I
target system injection abstract | 5 g % % % g % g
: injection
source code hooks states : J -t
I node hode noge decisions
- thin agent
I
I | _
I cluster Failure
- : checkers
I
instrumented I
I
target system :
I
I
I
Analysis stage Testing stage

417124 10

Legolas workflow

. Instrument fault injection hooks
2. Extract abstract states

3. Stateful injection decision algorithms

4. Failure checkers

4/17/24

This talk

Fault injection granularity & methodology

Node level API level Operation level

Process i Quorum
<> Messenger

throw exception

or add delay Request
Handlers Snapshot
Manager cee
library or
another service normal env and services

Environment injection Interception injection Instrumentation injection

process kill,
packet loss,
disk faults, etc.

return 404,
error code

F.g, ChaosMonkey, Blockade, ..~ E.g. LFI [DSN '09], Filibuster [SoCC ‘21] Legolas

417124

Ildentify potential faulty conditions

Locate all the call instructions in the code

Analyze the invocation target to extract potential errors

- Based on exceptions in method signatures! Not reliable!

Problem |:a method may internally throw an exception
that is not declared in the signature

Solution: intra-procedural analysis of method body

- ldentify exceptions that are uncaught or caught but rethrown

4117724

Ildentify potential faulty conditions

Problem 2:a method may be impossible to encounter an
exception declared in the signature

- Due to polymorphism or interface

class ZooKeeperServer { class BinaryOutputArchive {
void finishSessionInit () { DétaOutput out; .

ByteArrayOutputStream baos = BinaryOutputArchive (OutputStream strm) {
new ByteArrayOutputStream out = new DataOutputStream(strm);

BinaryOutputArchive bos = new ‘\\ﬂ) , , , , , ,

n-memory void writeInt (int 1, String tag)| throws IOException] {

BinaryOutputArchive (baos) . .

bos.writeInt (-1, "len"); stream out.writelnt (1);

}
} \ impossible to throw }

|OException here!

}

Solution: context-sensitive, inter-procedural analysis
- Check if objects used in a call site are known in-memory object types

4117724

Instrument injection hooks

InjectionQuery query = new InjectionQuery (

serverId, threadId, ..., invokedMethodSig,
4___\\\\‘ faultIds) ;
’//’4/”’———' InjectionCommand command = stub.inject (query) ;
' ' 1 -' — ;
+ LegolasAgent.inj&ct (0, 3, if (command.id 1) return; // injection

/* simulate the decided fault */
"org.apache.zookeeper.server.DataTree",

"serializeNode",
1115, "<org.apache.jute.OutputArchive:
void writeRecord(...)>", 268);

Legolas
server

Legolas

agent

outputArchive.writeRecord (node, '"node");

target system code (ZooKeeper)

As deep as possible for ease of reasoning

A call instruction is injected when:
- Faults originate from explicit throw inside the target method body

- Invocation target is an external function

4117724 I5

Legolas workflow

2. Extract abstract states

3.

4.

4117724

Idea: group injections by execution state

o JdJoy Ul dWDNDR

O

public class
public wvoid run() {
int logCount = 0;
while (true) {
Request si = queueRequests. take() ;
if (zks.getDB() .append(si),)

Most
logCount++;

if (logCount > snapCount) ({
(snapThd = new Thread(() -> {
zks . takeSnapshot ()=

extends Thread {

})) .start(); Fepv
}
logCount = 0; <§E}
/\
synchronized (node) { N

ocoa.writeRecord (node, "node");

oa.writeString(pathString, "path");

state | state 2
| |
| !
—_—<o > >

Many fault injection attempts
are testing similar scenarios

- Extract high-level state to group
fault injection attempts

- Explore injection space
systematically with the
abstraction of states

State representation

Complete execution state: PC, stacktrace, memory

state state state state state

S
—_—0—> <> === >
State variables and their value changes? int logCount = 0
: ' : : : equest si = queuedRequests.take();
- Still too excessive = ineffective grouping A I S
. logCount++;
- Example: 1logCount as a state variable & (omts > o) |

zks.takeSnapshot () ;

= e === —— - | logCount = 0;
0000 O |
l

_________________ J }

° (n > snapCount) }

Need a higher-level representation

4117724

Idea: abstract state variables (ASV)

Concrete state values do not matter

...unless they indicate a condition change

concrete values
of logCount

6 (n > snapCount)

- Trigger different code blocks to execute

Each ASV represents a stage of service in the

4117724

int logCount = 0;
while (true) {

Request si = queuedRequests.take();

if (zks.getDB() .append(si)) {
logCount++;
if (logCount > snapCount) {

logCount = 0;
}
}

system

Automatically infer abstract states

4117724

Focus on task-unit classes
E.g., classes that extend Thread or Runnable

Treat all non-static, non-constant fields in
a task class as concrete state variables (SV)

|dentify the branch conditions that have
data-dependency with SVs

Locate basic blocks that are control-
dependent on these conditions

Assigns index for each block as an
Abstract State Variable (ASV)

Algorithm 1: Infer abstract state variables

1
2

o 0 N & AW

11
12
13
14
15
16
17
18
19
20
21
22
23

25

Function InferAsv(task_class):
csv_list « InferCSV(task_class);
task_method « getTaskMethod(task_class);

asv_locations « [task_method.body().getFirst()];
Process (task_method.body(), dep_graph, false);

dep_graph < buildDependence(task_method, csv_list);

Function Process (instructions, dep_graph, flag):
inst « instructions.begin();
hasAction < false;
while inst # instructions.end() do
if isBranch(inst) then
<cond,blocks,next> < parseBranch(inst);
if dep_graph.contains(cond) then
for block <« blocks do
‘ Process (block.body(), dep_graph, true);
end
end
inst «— next;
else
hasAction <« hasAction | isAction(inst);
inst « inst.next();
end
end
if hasAction and flag then
‘ asv_locations.add(instructions.begin());

20

4117724

Example of ASV inference

public class SyncRequestProcessor extends Thread {

if (zks.getZKDatabase () .append(request)) {
if (++logCount > snapCount) {

+ LegolasAgent.inform(identityHashCode,

}

else {
+ LegolasAgent.inform(identityHashCode,
(snapThd = new Thread ("Snapshot") {...
}
logCount = 0;

LOG.warn ("Too busy to snap, skipping");

14

public void run () {
int logCount = 0;
+ LegolasAgent.inform(identityHashCode, ..., 0);
while (true) {
Request request = queuedRequests.take();
if (request == requestOfDeath) break;
3 LegolasAgent.inform(identityHashCode, ..., 1);

if (snapThd != null && snapThd.isAlive()) {

.7 3);
}) .start () ;

ASV, (init)
(request
ASVI handling)

ASV, (snapshotting
in progress)

ASV; (snapshotting)

R

21

Legolas workflow

2,

3. Stateful injection decision algorithms

4.

Injection decision algorithm

Use the current ASVs to decide whether to
grant an injection or not

Consideration |: Should not focus too much
on one state

- Difficult to know If a state Is interesting or not

Consideration 2: Buggy point may not be the

first request

- Trying just once can miss bugs

4

-

~

ASV tracker

buggy point (should
ASV, ASV; ASV; grant injection here)

——

>

\
= <> —0—>

4117724

injection
controller

S

/

Legolas server

Ildea: budgeted-state round-robin (BSRR)

Initial budget for all ASVs is N (default 5)

Each trial focuses on one ASY
- Only an injection from this ASV would be granted

- Injections from other ASVs would be denied

ASV, ASV,

el

the focus of one trial
4/17/24

24

Budgeted-state round-robin (BSRR)

If an injection is granted, decrease the budget by 1
Move focused ASV to the queue end

Focus on ASV at the queue front in next trial

ASV, ASV,

el

the focus of new trial
4/17/24

25

Budgeted-state round-robin (BSRR)

If an injection is granted, decrease the budget by 1
Move focused ASV to the queue end

Focus on ASV at the queue front in next trial

ASV, ASV,

el

the focus of new trial
4/17/24

26

Budgeted-state round-robin (BSRR)

If an ASV is unseen before, append it to the queue end

If an ASV’s budget is used up, skip it in the round-robin

ASV, ASV, ASV;

el

the focus of new trial
4/17/24

(unseen)

27

Budgeted-state round-robin (BSRR)

If an ASV is unseen before, append it to the queue end
If an ASV’s budget is used up, skip it in the round-robin

After all ASVs’ budgets are used up, refill all ASVs

ASV; ASV, ASV,

A~

the focus of new trial
4/17/24

28

Randomization within an ASY

If there are multiple injection requests in an ASV, use randomization

ASV, ASV, ASV;
A A
| | I_L\ | \
——— OO0 g
probability an injection
request Is granted l
n 0.01 /
p — 1 — P C # of injection
requests in an ASV

Rationale:

- Grant at least one request from this ASV

- Let injection occur neither too early nor too late

4117724

29

Experiment setup

Evaluated systems

- Six widely-used, large-scale distributed systems

ZooKeeper 3.6.2 Coordination service
HDFS 3.2.2 689K Distributed file system
Kafka 2.8.0 322K Event streaming system
HBase 2.4.2 728K Distributed database
Cassandra 3.11.10 210K Distributed database
Flink 1.14.0 78K Stateful streaming system

Two fault injection testing experiments for each system
|. Exception: (1) I/O related exceptions; (2) custom exception that extends TOException
2. Delay: function calls that involve disk or network /O

4117724

417124

Injection instrumentation & ASV extraction

IHHH%HIIII

ZooKeeper
HDFS
Kafka
HBase
Cassandra
Flink

Statically injected

Methods

484
2127
343
5874
2127
997

Points
1947 226
3913 4636 104 390
754 5829 51 220
11051 10462 96 312
3913 4636 104 390
2299 4852 48 110

ASMs are the task unit classes (e.g., Threads, Runnables, etc)

Class ASM
Total Mean
708 36

A

N AW R~ B O

[U U U U, U Y

31
16
15
17
18

31

New bugs found by Legolas

ZooKeeper 4
HDFS 5
Kafka 5
HBase 2
Cassandra 2
Flink 2

All cause partial failure symptoms

Root causes are diverse

- Logic bugs, design flaws, mishandling of exceptions, race conditions

Eleven reports are explicitly confirmed by developers

4117724

32

New bug example in HDFS

class BlockReceiver implements Closeable ({ class PacketResponder implements Runnable, Closeable {
private int receivePacket () throws IOException { public void run() {
... while (isRunning() && !lastPacketInBlock) {
boolean lastPacketInBlock = PipelineAck ack = new PipelineAck();
header.islLastPacketInBlock () ; try {
if (mirrorOut != null && !mirrorError) ({ if (type '=_RacketResponderType.LAST IN PIPELINE
try { && |!'mirrorError)| {
ack.readFilelds (downstreamlIn) ;
packetReceiver.mirrorPacketTo (mirrorOut) ; }
... /S
} catch (IOException e) { } catch (IOException ioe) {

handleMirrorOutErrorJ(e) ;
} }
} }

return lastPacketInBlock?-1:len; }

Symptom:

- Some client hangs for | minute (normally the client is immediately notified of the error)

Root cause

- TheflagmirrorError is set after PacketResponder checks it

4117724

4117724

Efficacy of decision algorithm BSRR

20 -
18 A
k> 16 - —&— bsrr
3 14 A —®— random
o
x 12 - —¢— new state only
) 10 - —— exhaustive
) 8 -
®)]
S 6- X
44
2 —u 0
O -
0 200 400 600 800 1000 1200 1400

Experiment time (minutes)

BSRR exposed 20 bugs in a median of 58.2 minutes and a minimum of 4 minutes

34

417124

Comparisons with related work

Work Description Exposed | Median detection
bugs time

FATE [NSDI’I1] Use a concept of failure IDs
to enumerate failures

1057.9 minutes

CrashTuner [SOSP ‘19] Use meta-info variable

accesses to decide the timing 4 20.4 minutes
of injecting faults

CORDS [FAST ‘17] Use a FUSE file system to
inject a single corruption or
read/write error to one file-
system block at a time

0 N/A

35

Conclusion

Partial failure bugs are notorious in distributed systems
- Often only occur under subtle faulty conditions at special timing

- Existing fault injection testing is insufficient

Legolas: fault injection testing framework to expose partial failure bugs

|, Perform fine-grained, in-situ injection w/ static instrumentation
2. Automatically extract Abstract State Variables (ASVs) from system code

3. Use ASVs to fault injection decisions

@ https://github.com/OrderLab/Legolas

4117724

https://github.com/OrderLab/Legolas

Backup slides

417124

Performance of analysis and instrumentation

8.9 sec 31.6 sec 36.9 sec 20.9 sec 77.6 sec 63.9 sec

38

Fault injection trial duration

4117724

100 A

Duration (s)
(0]
(@]

N
o
1

o

(@)
o
1

S
o
1

=+

1
cassandra

flink

kafka

I
zookeeper

39

Invalid injections

Trials with invalid injections

894 (10) 86 (10)

All eliminated with context-sensitive invalid injection analysis

417124

40

417124

Known bugs

ZooKeeper

Cassandra

HDFS

ZK-2029
ZK-2201
ZK-2247
ZK-2325
ZK-2982
CA-6364
CA-6415
CA-8485
CA-13833
HDFS-11608
HDFS-12157

15.4 min
30.6 min
52.1 min
2.6 min
18.5 min
10.0 min
330.6 min
25.3 min
86.6 min
29.2 min
39.9 min

41

Related Work

Partial Failures

- Fail-Stutter [HotOS '01], IRON [SOSP ‘05], Limplock [SoCC "I 3], Fail-Slow Hardware
[FAST ‘18], Gray Failure [HotOS | /]

Fault Injection

- FATE [NSDII], CrashTuner [SOSP 1 9], CORDS [FAST ‘| 7], CharybdeFsS, tcconfig, byte-
monkey

Model Checking
- MODIST [NSDI‘09], SAMC [OSDI*14], FlyMC [EuroSys ‘9]

4/17/24

42

