
Efficient Exposure of Partial Failure
Bugs in Distributed Systems with

Inferred Abstract States
Haoze Wu, Jia Pan, Peng Huang

NSDI ‘24

Failures in distributed systems

4/17/24 2

client1

client2

clientN

manager

follower follower leaderleader

fault-tolerant

crashcrash

total failure
(all services unavailable)

…

The problem of partial failures

4/17/24 3

client1

client2

clientN

…

create

read

read

read

write
write

write
ℛ ≔ a set of services provided by a
distributed system S ≈ list of APIs

manager

follower follower leaderleader

Some ℛ! ⊂ ℛ fail to maintain their safety or liveness
properties, while other servicesℛ ∖ ℛ! behave as expected

We define partial failure as:

Partial failures prevalent in production

4/17/24 4

…

A real bug example

4/17/24 5

follower followerleader

Request
Handlers

Snapshot

void serializeNode(OutputArchive oa, ...){
 synchronized (node) {
 scount++;
 oa.writeString(pathString, "path");
 oa.writeRecord(node, "node");
 ...
 }

}

Stuck due to
transient
network issue

heartbeat
heartbeat

No leader re-election triggered!

CREATE

SET

GET

Fix: make a copy
of node, serialize
data without lock

Fault injection testing is needed
Many partial failure bugs are only

triggered by rare fault events

Fault injection testing aims to
catch such bugs
- Simulate faults while exercising a system

with test workloads

An increasingly popular practice
- Randomly kill a process/VM, introduce

packet loss, simulate disk errors, etc.

4/17/24 6

Chaos Monkey Jepsen Blockade

Challenges

Subtle faults occurring at fine granularity
- only writes to certain files fail
- network fault that only affects a particular connection
- microburst or transient slowness in a subset of operations
- a custom exception in a specific RPC

4/17/24 7

Coarse-grained, black-box fault
injections are insufficient!

synchronized (node) {
 oa.writeString(pathString, "path");
 oa.writeRecord(node, "node");
 ...

}

network delay should
occur to only these
operations

Challenges (cont’d)
Very large injection space

- Over 1000 candidates for fault injection in 1 second
during ZooKeeper’s execution

Distributed systems are by design fault-tolerant
- Most injected faults would be masked or lead to expected

behavior (e.g., abort on failure to read a critical file)
4/17/24 8

random injections are
ineffective and inefficient

Our solution: Legolas

1. fine-grained, in-situ injection
customized to system code
- statically instrument hooks to precisely

simulate subtle faults within a system

2. systematic yet efficient search
of large fault injection space
- extract abstract state and leverage the

state to compress the search space

4/17/24 9

A fault injection testing framework for large
distributed system to expose partial failure bugs

Legolas Overview

4/17/24 10

{ }
target system
source code

Static
analyzer

{ }

injection
hooks

1 2
abstract
states

instrumented
target system

Testing stageAnalysis stage

cluster

node node node
thin agent thin agent thin agent

Legolas
server

Failure
checkers

inform
abstract states

injection
decisions

Legolas workflow
1. Instrument fault injection hooks

2. Extract abstract states

3. Stateful injection decision algorithms

4. Failure checkers

4/17/24 11

This talk

Fault injection granularity & methodology

4/17/24 12

controlled
execution env

Environment injection

process kill,
packet loss,

disk faults, etc.

Interception injection

return 404,
error code

library or
another service

Instrumentation injection

Node level API level

E.g., ChaosMonkey, Blockade, ... E.g., LFI [DSN ‘09], Filibuster [SoCC ‘21]

Operation level

Quorum
Messenger

Request
Handlers Snapshot

Manager …

Process 𝜋

Legolas

normal env and services

throw exception
or add delay

Identify potential faulty conditions
Locate all the call instructions in the code

Analyze the invocation target to extract potential errors
- Based on exceptions in method signatures? Not reliable!

Problem 1: a method may internally throw an exception
that is not declared in the signature

Solution: intra-procedural analysis of method body
- Identify exceptions that are uncaught or caught but rethrown

4/17/24 13

Identify potential faulty conditions
Problem 2: a method may be impossible to encounter an

exception declared in the signature
- Due to polymorphism or interface

Solution: context-sensitive, inter-procedural analysis
- Check if objects used in a call site are known in-memory object types

4/17/24 14

class ZooKeeperServer {
 void finishSessionInit() {
 ByteArrayOutputStream baos =
 new ByteArrayOutputStream();
 BinaryOutputArchive bos = new
 BinaryOutputArchive(baos);
 bos.writeInt(-1, "len");
 }
}

class BinaryOutputArchive {
 DataOutput out;
 BinaryOutputArchive(OutputStream strm) {
 out = new DataOutputStream(strm);
 }
 void writeInt(int i, String tag) throws IOException {
 out.writeInt(i);
 }
}impossible to throw

IOException here!

in-memory
stream

As deep as possible for ease of reasoning

A call instruction is injected when:
- Faults originate from explicit throw inside the target method body
- Invocation target is an external function

Instrument injection hooks

4/17/24 15

+ LegolasAgent.inject(0, 3,
 "org.apache.zookeeper.server.DataTree",
 "serializeNode",
 1115, "<org.apache.jute.OutputArchive:
 void writeRecord(...)>", 268);

outputArchive.writeRecord(node, "node");

Legolas
agent

InjectionQuery query = new InjectionQuery(
 serverId, threadId, ..., invokedMethodSig,
 faultIds);
InjectionCommand command = stub.inject(query);
if (command.id == -1) return; // no injection
/* simulate the decided fault */
...

Legolas
server

target system code (ZooKeeper)

Legolas workflow
1. Instrument fault injection hooks

2. Extract abstract states

3. Stateful injection decision algorithms

4. Failure checkers

4/17/24 16

Idea: group injections by execution state
1 public class SyncRequestProcessor extends Thread {
2 public void run() {
3 int logCount = 0;
4 while (true) {
5 Request si = queueRequests.take();
6 if (zks.getDB().append(si)) {
7 logCount++;
8 if (logCount > snapCount) {
9 (snapThd = new Thread(() -> {
10 zks.takeSnapshot();
11 })).start();
12 }
13 logCount = 0;
14 }
15 }
 ...
 }
 }

4/17/24 17

synchronized (node) {
 oa.writeString(pathString, "path");
 oa.writeRecord(node, "node");
 ...

}

Many fault injection attempts
are testing similar scenarios
- Extract high-level state to group

fault injection attempts
- Explore injection space

systematically with the
abstraction of states

Most faults
come from here

state 1 state 2

Few faults com
e from here

State representation
Complete execution state: PC, stacktrace, memory

State variables and their value changes?
- Still too excessive à ineffective grouping
- Example: logCount as a state variable

Need a higher-level representation

4/17/24 18

state
1

state
2

state
3

state
4

state
5

...
• Too expensive to track
• Useless grouping

int logCount = 0;
while (true) {
 Request si = queuedRequests.take();
 if (zks.getDB().append(si)) {
 logCount++;
 if (logCount > snapCount) {
 zks.takeSnapshot();
 logCount = 0;
 }
 }
 ...

}

0 1 2 3 n-1

n

...

(n > snapCount)

Idea: abstract state variables (ASV)
Concrete state values do not matter

...unless they indicate a condition change

- Trigger different code blocks to execute

Each ASV represents a stage of service in the system

4/17/24 19

0 1 2 3 n-1

n

...

(n > snapCount)

concrete values
of logCount

int logCount = 0;
while (true) {
 Request si = queuedRequests.take();
 if (zks.getDB().append(si)) {
 logCount++;
 if (logCount > snapCount) {
 zks.takeSnapshot();
 logCount = 0;
 }
 }
 ...

}

zks.takeSnapshot();

Automatically infer abstract states
1. Focus on task-unit classes
- E.g., classes that extend Thread or Runnable

2. Treat all non-static, non-constant fields in
a task class as concrete state variables (SV)

3. Identify the branch conditions that have
data-dependency with SVs

4. Locate basic blocks that are control-
dependent on these conditions

5. Assigns index for each block as an
Abstract State Variable (ASV)

4/17/24 20
See paper for more details!

Example of ASV inference

4/17/24 21

public class SyncRequestProcessor extends Thread {
 public void run() {
 int logCount = 0;

+ LegolasAgent.inform(identityHashCode, ..., 0);
 while (true) {
 Request request = queuedRequests.take();
 if (request == requestOfDeath) break;

+ LegolasAgent.inform(identityHashCode, ..., 1);
 if (zks.getZKDatabase().append(request)) {
 if (++logCount > snapCount) {
 if (snapThd != null && snapThd.isAlive()) {

+ LegolasAgent.inform(identityHashCode, ..., 2);
 LOG.warn("Too busy to snap, skipping");
 }
 else {

+ LegolasAgent.inform(identityHashCode, ..., 3);
 (snapThd = new Thread("Snapshot") {...}).start();
 }
 logCount = 0;
 }
 }
 }
 }

}

ASV0

ASV1

ASV2

ASV3

ASV0 ASV1 ASV2

ASV3

(snapshotting)

(snapshotting
in progress)

(init)

(request
handling)

Legolas workflow
1. Instrument fault injection hooks

2. Extract abstract states

3. Stateful injection decision algorithms

4. Failure checkers

4/17/24 22

Injection decision algorithm
Use the current ASVs to decide whether to

grant an injection or not

Consideration 1: Should not focus too much
on one state
- Difficult to know if a state is interesting or not

Consideration 2: Buggy point may not be the
first request
- Trying just once can miss bugs

4/17/24 23

Legolas server

ASV tracker

injection
controller

ASV1 ASV2 ASV3

buggy point (should
grant injection here)

Idea: budgeted-state round-robin (BSRR)
Initial budget for all ASVs is N (default 5)

Each trial focuses on one ASV
- Only an injection from this ASV would be granted
- Injections from other ASVs would be denied

4/17/24 24

ASV1 ASV2

the focus of one trial

Budgeted-state round-robin (BSRR)
If an injection is granted, decrease the budget by 1

Move focused ASV to the queue end

Focus on ASV at the queue front in next trial

4/17/24 25

ASV2 ASV1

the focus of new trial

Budgeted-state round-robin (BSRR)
If an injection is granted, decrease the budget by 1

Move focused ASV to the queue end

Focus on ASV at the queue front in next trial

4/17/24 26

ASV1 ASV2

the focus of new trial

Budgeted-state round-robin (BSRR)
If an ASV is unseen before, append it to the queue end

If an ASV’s budget is used up, skip it in the round-robin

4/17/24 27

ASV2 ASV1

the focus of new trial

ASV3

(unseen)

Budgeted-state round-robin (BSRR)
If an ASV is unseen before, append it to the queue end

If an ASV’s budget is used up, skip it in the round-robin

After all ASVs’ budgets are used up, refill all ASVs

4/17/24 28

ASV3 ASV2

the focus of new trial

ASV1

Randomization within an ASV
If there are multiple injection requests in an ASV, use randomization

Rationale:
- Grant at least one request from this ASV
- Let injection occur neither too early nor too late

4/17/24 29

ASV1 ASV2 ASV3

𝑝 = 1 − 𝑒 !"# $.$& '

probability an injection
request is granted

of injection
requests in an ASV

Experiment setup
Evaluated systems
- Six widely-used, large-scale distributed systems

Two fault injection testing experiments for each system
1. Exception: (1) I/O related exceptions; (2) custom exception that extends IOException

2. Delay: function calls that involve disk or network I/O

4/17/24 30

System Release SLOC Type

ZooKeeper 3.6.2 95K Coordination service

HDFS 3.2.2 689K Distributed file system

Kafka 2.8.0 322K Event streaming system

HBase 2.4.2 728K Distributed database

Cassandra 3.11.10 210K Distributed database

Flink 1.14.0 78K Stateful streaming system

Injection instrumentation & ASV extraction

Class ASM
ASV

Total Mean Min Max

708 36 226 6 1 31

4636 104 390 4 1 16

5829 51 220 4 1 15

10462 96 312 3 1 17

4636 104 390 4 1 18

4852 48 110 2 1 6

4/17/24 31

Statically injected

Methods Points

484 1947

2127 3913

343 754

5874 11051

2127 3913

997 2299

System

ZooKeeper

HDFS

Kafka

HBase

Cassandra

Flink

ASMs are the task unit classes (e.g., Threads, Runnables, etc)

New bugs found by Legolas

All cause partial failure symptoms

Root causes are diverse
- Logic bugs, design flaws, mishandling of exceptions, race conditions

Eleven reports are explicitly confirmed by developers

4/17/24 32

System Unique Bugs

ZooKeeper 4

HDFS 5

Kafka 5

HBase 2

Cassandra 2

Flink 2

New bug example in HDFS

Symptom:
- Some client hangs for 1 minute (normally the client is immediately notified of the error)

Root cause
- The flag mirrorError is set after PacketResponder checks it

4/17/24 33

class BlockReceiver implements Closeable {
 private int receivePacket() throws IOException {
 ...
 boolean lastPacketInBlock =

 header.isLastPacketInBlock();
 if (mirrorOut != null && !mirrorError) {
 try {
 ...
 packetReceiver.mirrorPacketTo(mirrorOut);
 ...
 } catch (IOException e) {
 handleMirrorOutError(e);
 }
 }
 return lastPacketInBlock?-1:len;
 }

}

class PacketResponder implements Runnable, Closeable {
 public void run() {
 while (isRunning() && !lastPacketInBlock) {
 PipelineAck ack = new PipelineAck();
 try {
 if (type != PacketResponderType.LAST_IN_PIPELINE

 && !mirrorError) {
 ack.readFields(downstreamIn);
 }
 // ...
 } catch (IOException ioe) {
 ...
 }
 }
 }

}

IOException
injected inside

get stuck

set flag mirrorError

Efficacy of decision algorithm BSRR

4/17/24 34

BSRR exposed 20 bugs in a median of 58.2 minutes and a minimum of 4 minutes

Comparisons with related work

Work Description Exposed
bugs

Median detection
time

FATE [NSDI ’11] Use a concept of failure IDs
to enumerate failures

1 1057.9 minutes

CrashTuner [SOSP ‘19] Use meta-info variable
accesses to decide the timing
of injecting faults

4 20.4 minutes

CORDS [FAST ‘17] Use a FUSE file system to
inject a single corruption or
read/write error to one file-
system block at a time

0 N/A

4/17/24 35

Conclusion
Partial failure bugs are notorious in distributed systems
- Often only occur under subtle faulty conditions at special timing
- Existing fault injection testing is insufficient

Legolas: fault injection testing framework to expose partial failure bugs
1. Perform fine-grained, in-situ injection w/ static instrumentation
2. Automatically extract Abstract State Variables (ASVs) from system code
3. Use ASVs to fault injection decisions

4/17/24 36

https://github.com/OrderLab/Legolas

https://github.com/OrderLab/Legolas

Backup slides

4/17/24 37

Performance of analysis and instrumentation

ZooKeeper HDFS Kafka Cassandra HBase Flink

8.9 sec 31.6 sec 36.9 sec 20.9 sec 77.6 sec 63.9 sec

4/17/24 38

Fault injection trial duration

4/17/24 39

Invalid injections
Trials with invalid injections

All eliminated with context-sensitive invalid injection analysis

4/17/24 40

ZooKeeper HDFS Kafka Cassandra HBase Flink

45 (6) 20 (9) 0 894 (10) 86 (10) 0

Known bugs
System Bug Id Exposure Time

ZooKeeper

ZK-2029 15.4 min

ZK-2201 30.6 min

ZK-2247 52.1 min

ZK-2325 2.6 min

ZK-2982 18.5 min

Cassandra

CA-6364 10.0 min

CA-6415 330.6 min

CA-8485 25.3 min

CA-13833 86.6 min

HDFS
HDFS-11608 29.2 min

HDFS-12157 39.9 min

4/17/24 41

Related Work
Partial Failures
- Fail-Stutter [HotOS ’01], IRON [SOSP ‘05], Limplock [SoCC ‘13], Fail-Slow Hardware

[FAST ‘18], Gray Failure [HotOS ‘17]

Fault Injection
- FATE [NSDI ‘11], CrashTuner [SOSP ‘19], CORDS [FAST ‘17], CharybdeFS, tcconfig, byte-

monkey

Model Checking
- MODIST [NSDI ‘09], SAMC [OSDI ‘14], FlyMC [EuroSys ‘19]

4/17/24 42

