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Datacenter Apps Have Tight SLO Requirements

My R - elasticsearch Qeth

diill

=
TITTT

dLill

TToiTT
diill

TITTT

Concurrent activities Concurrent activities Concprrent activilies

Requirements: Tight SLO
Problem: Often violated because of limited resources



Assign More System Resources?
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Assign More System Resources?
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Still cannot solve the SLO violations



App-Defined Resources Are Critical to App Perf.
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Overload Happens in App-Defined Resources
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Overload Example: Es. Query Cache
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Overload Example: Es. Query Cache
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One Query Can Overload App-Defined Resource
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Existing Overload Control Is Insufficient

Admission control
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Existing Overload Control Is Insufficient
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Key Takeaway: Overload Control Solutions
Should be Aware of App-Defined Resources



Performance Isolation Is Best-effort
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Mitigating the Application-Defined Resource Overload
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Atropos: A System to Mitigate App Resource Overload
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Atropos: A System to Mitigate App Resource Overload
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Cancel Request via Safe Cancellation

1 public void run() {

2 try { ...

3 } catch (InterruptedException e) {

4 1 |]les the cancel

5 X

6 e

7 if (Thread.currentThread().isInterrupted()) {
9 }

10 }
Example: Implement safe cancellation with Interruption in Java

Safe cancellation requires properly resource releasing, states clearing,
etc.
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Safe Cancellation Has Been Widely Supported

Language Applications Supporting Cancel With Initiator

C/C++ 60 49 46
Java 34 25 25
Go 44 32 29
Python 13 9 9
Total 151 115 (76%) 109 (95% of 115)

Throughout 4 different languages in 115 out of 151 applications
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Atropos: A System to Mitigate App Resource Overload
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Monitor Requests

« How to cover diverse application-defined resources?
o Support 3 kinds of abstract resources
o Provide trace APIs to instrument each kind of resources

« How to identify that is overloaded and
that could release the most load on the resource?
o Propose 2 metrics to quantify overload level and resource gain

For details, please refer to our paper
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Design of Atropos
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Evaluation

« We adapted Atropos to 6 applications across 3 languages
o MySQL, Postgresql, Apache, elasticsearch, solr, etcd
o Adaptation effort: 49.5 LOC per application

- We evaluated Atropos with 15 real world cases
o Noisy requests monopolizing resources degrade performance

- We compared Atropos with 4 SOTA baselines
o Overload control: Protego
o Performance isolation: pBox
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Reduction of Overload
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Request Drop Rate
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Conclusion

: Overload in application-defined resources is harmful to
application performance but hard to prevent

: Let requests run instead of dropping them before
execution to precisely cancel the request that monopolizes resource

: Achieves lower tail latency and lower request drop rate

https://github.com/OrderLab/Atropos
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