
Mitigating Application Resource Overload
with Targeted Task Cancellation

Yigong Hu, Zeyin Zhang, Yicheng Liu, Yile Gu, Shuangyu Lei, Baris Kasikci, Peng
Huang

1

2

Datacenter Apps Have Tight SLO Requirements

Requirements: Tight SLO
Problem: Often violated because of limited resources

Concurrent activities Concurrent activities Concurrent activities

3

Assign More System Resources?

Concurrent activities

4

Assign More System Resources?

Concurrent activities

Still cannot solve the SLO violations

App-Defined Resources Are Critical to App Perf.

5

Task
Queue

Document

Inverted
Index

Query
Cache

Request

CPUlockmemory

Request Request

5

System resources

Application-Defined
Resources

Abstract

Overload Happens in App-Defined Resources

Task
Queue

Document

Inverted
Index

6

Query
Cache

Request Request Request

System resources

Application-Defined
Resources

Abstract

CPUlockmemory

Read CContentRead AContent

Overload Example: Es. Query Cache

7

users

Documents

Read A Read A

Query CacheAvailable Space

Request

Response

Scan documents

Get

A B C

Miss

Overload Example: Es. Query Cache

8

users

Documents
Request

Response

Get Miss

A B C

Miss

 ScanContentAvailable
Space

Read C

Read A

Read C

Miss

Read A Read A Scan documents

Query Cache

One Query Can Overload App-Defined Resource

9

Existing Overload Control Is Insufficient

10

Regular Request

Noisy Request

Clients

Admission control

Low SLO attainment

Query
Cachemonopolize

High drop rate

Existing Overload Control Is Insufficient

11

Drop

Clients

Queue management

Query
Cachemonopolize

Regular Request

Noisy RequestHigh SLO attainment
High drop rate

12

Key Takeaway: Overload Control Solutions
Should be Aware of App-Defined Resources

Performance Isolation Is Best-effort

13Pushing Performance Isolation Boundaries into Application with pBox [SOSP’23]

Application

Resource Management

Read
Buffer

IndexQuery
Cache

Aware of App-defined resources
Low SLO attainment

Regular Request

Noisy Request

Only delay the noisy request and
hope it release the resources

Mitigating the Application-Defined Resource Overload

14

SLO Attainment

Pr
es

er
ve

d
Re

qu
es

ts Resource
container

Protego

Our Goal

SEDA

pBox

Breakwater

Overload Control

Performance Isolation

Atropos: A System to Mitigate App Resource Overload

15

Application

IndexQuery
Cache

If resource overload happens, cancel the
request that releases the most load

Allow any requests to execute first

Monitor end-to-end performance and
per-task app-defined resource usage

Cancel

Regular Request

Noisy Request

16

Application

Index
Query
Cache

If resource overload happens, cancel the
request that releases the most load

Allow any requests to execute first

Monitor end-to-end performance and
per-task app-defined resource usage

Cancel

Regular Request

Noisy Request

Atropos: A System to Mitigate App Resource Overload

Cancel Request via Safe Cancellation

17

Example: Implement safe cancellation with Interruption in Java
Safe cancellation requires properly resource releasing, states clearing,

etc.

Safe Cancellation Has Been Widely Supported

18

Throughout 4 different languages in 115 out of 151 applications

19

Application

Index
Query
Cache

If resource overload happens, cancel the
request that releases the most load

Allow any requests to execute first

Monitor end-to-end performance and
per-task app-defined resource usage

Cancel

Regular Request

Noisy Request

Atropos: A System to Mitigate App Resource Overload

Monitor Requests

20

• How to cover diverse application-defined resources?
o Support 3 kinds of abstract resources
o Provide trace APIs to instrument each kind of resources

• How to identify the resource that is overloaded and the request
that could release the most load on the resource?
o Propose 2 metrics to quantify overload level and resource gain

For details, please refer to our paper

Design of Atropos

21

Atropos Resource Manager

Per Task Resource Usage
Drop Policy

Built-in
Cancellation

Running
Requests

Application Existing Logic

Atropos
APIs

Cancellation
Invoker Instrumented Atropos APIs

Atropos Internal Logic

Evaluation

22

• We adapted Atropos to 6 applications across 3 languages
o MySQL, Postgresql, Apache, elasticsearch, solr, etcd
o Adaptation effort: 49.5 LOC per application

• We evaluated Atropos with 15 real world cases
o Noisy requests monopolizing resources degrade performance

• We compared Atropos with 4 SOTA baselines
o Overload control: Protego
o Performance isolation: pBox

Reduction of Overload

23

Surpass all baselines on all cases in p99 latency and throughput*
Bounded p99 latency within 16% compared to none-overload case

The best baseline Protego is 88%

�� �� �� �	 �
 �� �� �
 �� ��� ��� ��� ��� ��	 ��

����

���

�

��

���

�
��
�
�

��
�

��
��
��

��
�	

�

�� �� �� �	 �
 �� �� �
 �� ��� ��� ��� ��� ��	 ��
���
���
��	
���
��

���

�
��

��
��
��

�

��
�	

�
��

� ����� ��� ��� ���! ���� �������

* Throughput result is in the paper

Request Drop Rate

24

Much lower drop rate compared to Protego

�� �� �	 �
 �� �� �
 ��� ��� ��	
����

��

���

	��

��

���

����

�
�	

�
��

�
������� �������

25

Conclusion

• Problem: Overload in application-defined resources is harmful to
application performance but hard to prevent

• Key insight: Let requests run instead of dropping them before
execution to precisely cancel the request that monopolizes resource

• Key results: Achieves lower tail latency and lower request drop rate

https://github.com/OrderLab/Atropos

https://github.com/OrderLab/Atropos

