Mitigating Application Resource Overload
with Targeted Task Cancellation

Yigong Hu, Zeyin Zhang, Yicheng Liu, Yile Gu, Shuangyu Lei, Baris Kasikci, Peng
Huang

=
BOSTON i UCI A M
U N IVE RS I TY J OLIJ_II\I\IISV E{OQII)E({NS UNIVERSITY OF

MICHIGAN

Datacenter Apps Have Tight SLO Requirements

My R - elasticsearch Qeth

diill

=
TITTT

dLill

TToiTT
diill

TITTT

Concurrent activities Concurrent activities Concprrent activilies

Requirements: Tight SLO
Problem: Often violated because of limited resources

Assign More System Resources?

m» elasticsearch &

» 5

Concurrent activities

dLill

TITTT

Assign More System Resources?

elasticsearch &

- C
I <,—
a i D)
TYTTY (

Conadurrent activities

phbhl
B
ag|

TTITTT

TTTTT

diill

Still cannot solve the SLO violations

App-Defined Resources Are Critical to App Perf.

[Request Request Request J

 Z

m» elasticsearch
h 4

. . . Query ¢ Inve rtEd —gg
Application-Defined Cache Index e
Resources
4 Task @
A4 Document
Queue - 4

Abstract

System resources [@ memory @ lock E3JE CPU]

ALLL)

Overload Happens in App-Defined Resources

[Request Request Request J

 Z

m» elasticsearch

W
@ery ‘ merted =&
Application-Defined Cache Index -r_g
Resources
4 k
Que 4 Qment@
Abstract

ALLL)

System resources [@ memory @lock [EE]E cpU]

=
TTTTT

Overload Example: Es. Query Cache

N

'2.2'% USErs Read A Read A Scan documents
Miss Get
Available Space Content ReadA | Content ReadC| Query Cache

m» elasticsearch
A 4

A B C 3
8—[h |B—|hH |B—]} Response
Documents |B—||| |B— O— =
|— |— a— || Request
— — ‘r— 7

Overload Example: Es. Query Cache

& Read C

'2.2'% users Read A Read A Scan documents Read C
Read A
Miss
Miss Get y
Mspace. Content Scan | Query Cache

m» elasticsearch
A 4

A B C 3
8—[h |B—|hH |B—]} Response
Documents |B—||| |B— O— =
|— |— a— || Request
— — ‘r— 8

One Query Can Overload App-Defined Resource

® w/o Scan Request ® 1/100,000 Scan Request
40

w
o

N
o

N
o

p99 Latency (s)

h

o

10 20 30 40 50
Offered Load (kQPS)

Existing Overload Control Is Insufficient

Admission control

B

B F a . I

D - elastlcsearchQuery
monopolizeihe

Clients D? : AU_J I:I

0 g

Noisy Request

ow SLO attainment L
Regular Request

High drop rate -

10

Existing Overload Control Is Insufficient

Queue management

4 N

Drop m» elasticsearch .
\ monopolize C.ache
1 0=

/ N I:I I:I /

Noisy Request

Clients

gh SLO attainment o
Regular Request

-igw drop rate -

11

Key Takeaway: Overload Control Solutions
Should be Aware of App-Defined Resources

Performance Isolation Is Best-effort

N

1) her

‘ Resource Management ‘

!

Read

\ Buffer

Query
Cache

.| Index

—8

Aware of App-defined resources

Low SLO attainment

_. Only delay the noisy request and
hope it release the resources

Noisy Request

Regular Request

13

Mitigating the Application-Defined Resource Overload

APerformance Isolation

:Resource
'container

2 Our Goal

Preserved Requests

SLO Attainment

14

Atropos: A System to Mitigate App Resource Overload

ﬂ]\) ,g(v I:I Allow any requests to execute first
4 Application
/ I:I I:I E \ Monitor end-to-end performance and

per-task app-defined resource usage
If resource overload happens, the
'—]- =T request that releases the most load
Query Index k

Cache L_ 8
k / N Noisy Request

Regular Request

15

Atropos: A System to Mitigate App Resource Overload

/g(v ﬁl Allow any requests to execute first
/ ApplicatioN
I:I Monitor end-to-end performance and
per-task app-defined resource usage
If resource overload happens, the
? request that releases the most load
sl = i “
k / Noisy Request

Regular Request

16

Cancel Request via Safe Cancellation

1 public void run() {

2 try { ...

3 } catch (InterruptedException e) {

4 1 |]les the cancel

5 X

6 e

7 if (Thread.currentThread().isInterrupted()) {
9 }

10 }
Example: Implement safe cancellation with Interruption in Java

Safe cancellation requires properly resource releasing, states clearing,
etc.

17

Safe Cancellation Has Been Widely Supported

Language Applications Supporting Cancel With Initiator

C/C++ 60 49 46
Java 34 25 25
Go 44 32 29
Python 13 9 9
Total 151 115 (76%) 109 (95% of 115)

Throughout 4 different languages in 115 out of 151 applications

18

Atropos: A System to Mitigate App Resource Overload

ﬂ]\) ,g(v I:I Allow any requests to execute first
4 Application
/ Iﬂ I:I \EI \ Monitor end-to-end performance and

per-task app-defined resource usage

If resource overload happens, the
? request that releases the most load
sl = i “
k / Noisy Request

Regular Request

19

Monitor Requests

« How to cover diverse application-defined resources?
o Support 3 kinds of abstract resources
o Provide trace APIs to instrument each kind of resources

« How to identify that is overloaded and
that could release the most load on the resource?
o Propose 2 metrics to quantify overload level and resource gain

For details, please refer to our paper

20

Design of Atropos

Running
Requests

Built-in : - - _
DDD I:I 4' Cancella’uon] Application Existing Logic

[Atropos } [Ca”"e”aﬁonJ Instrumented Atropos APIs

APIs Invoker

Atropos Resource Manager

) Drop Polic Atr Internal Logic
[Per Task Resource Usage] P y t OposS ernal Log
- J - J

21

Evaluation

« We adapted Atropos to 6 applications across 3 languages
o MySQL, Postgresql, Apache, elasticsearch, solr, etcd
o Adaptation effort: 49.5 LOC per application

- We evaluated Atropos with 15 real world cases
o Noisy requests monopolizing resources degrade performance

- We compared Atropos with 4 SOTA baselines
o Overload control: Protego
o Performance isolation: pBox

22

Reduction of Overload

B Atropos B Protego pBox DARC B PARTIES

=
o
o

=
o

=

Normalized
p99 Latency

©
=

_ cl c2 c3 c4 c5 c6 c7 c8 c9 ¢cl10 cl1 «cl2 <cl1l3 «cl4 c15
Case

Surpass all baselines on all cases in p99 latency and throughput*
Bounded p99 latency within 16% compared to none-overload case
The best baseline Protego is 88%

23

Request Drop Rate

Protego Atropos

100%

80% -

60% -

Drop Rate
N
o
X

20% A

0% -

cl c3 c4 c6 c/ c8 c9 cl2 cl3
Case

Much lower drop rate compared to Protego

cl4

24

Conclusion

: Overload in application-defined resources is harmful to
application performance but hard to prevent

: Let requests run instead of dropping them before
execution to precisely cancel the request that monopolizes resource

: Achieves lower tail latency and lower request drop rate

https://github.com/OrderLab/Atropos

25

https://github.com/OrderLab/Atropos

