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Datacenter Apps Have Tight SLO Requirements

Requirements: Tight SLO
Problem: Often violated because of limited resources

Concurrent activities Concurrent activities Concurrent activities
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Assign More System Resources?

Concurrent activities
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Assign More System Resources?

Concurrent activities

Still cannot solve the SLO violations



App-Defined Resources Are Critical to App Perf.
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Overload Happens in App-Defined Resources
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Read CContentRead AContent

Overload Example: Es. Query Cache
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Overload Example: Es. Query Cache
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One Query Can Overload App-Defined Resource
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Existing Overload Control Is Insufficient
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Existing Overload Control Is Insufficient
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Key Takeaway: Overload Control Solutions 
Should be Aware of App-Defined Resources



Performance Isolation Is Best-effort

13Pushing Performance Isolation Boundaries into Application with pBox [SOSP’23]
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Mitigating the Application-Defined Resource Overload
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Atropos: A System to Mitigate App Resource Overload
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Cancel Request via Safe Cancellation
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Example: Implement safe cancellation with Interruption in Java
Safe cancellation requires properly resource releasing, states clearing, 

etc.



Safe Cancellation Has Been Widely Supported
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Throughout 4 different languages in 115 out of 151 applications
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Monitor Requests
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• How to cover diverse application-defined resources? 
o Support 3 kinds of abstract resources 
o Provide trace APIs to instrument each kind of resources 

• How to identify the resource that is overloaded and the request 
that could release the most load on the resource? 
o Propose 2 metrics to quantify overload level and resource gain

For details, please refer to our paper



Design of Atropos
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Evaluation
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• We adapted Atropos to 6 applications across 3 languages 
o MySQL, Postgresql, Apache, elasticsearch, solr, etcd 
o Adaptation effort: 49.5 LOC per application 

• We evaluated Atropos with 15 real world cases 
o Noisy requests monopolizing resources degrade performance 

• We compared Atropos with 4 SOTA baselines 
o Overload control: Protego 
o Performance isolation: pBox



Reduction of Overload
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Surpass all baselines on all cases in p99 latency and throughput* 
Bounded p99 latency within 16% compared to none-overload case 

The best baseline Protego is 88%
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* Throughput result is in the paper



Request Drop Rate
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Much lower drop rate compared to Protego
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Conclusion

• Problem: Overload in application-defined resources is harmful to 
application performance but hard to prevent 

• Key insight: Let requests run instead of dropping them before 
execution to precisely cancel the request that monopolizes resource 

• Key results: Achieves lower tail latency and lower request drop rate

https://github.com/OrderLab/Atropos

https://github.com/OrderLab/Atropos

