
Argus: Debugging Performance Issues in
Modern Desktop Applications with

Annotated Causal Tracing

Lingmei Weng, Columbia University

Peng Huang, Johns Hopkins University

Jason Nieh, Columbia University

Junfeng Yang, Columbia University

From a spinning pinwheel
To wait or to kill? It is a hard question to answer!

2

3

 Profiler (e.g., macOS Instruments）

 more about potential optimization, may not a root cause

 Debugger (e.g., macOS spindump, lldb)

Existing tools for diagnosing desktop apps

4

• Multiple components

• High concurrency

Why diagnosing desktop apps is so hard?

5

Distributed Systems Mobile Apps

Causal Tracing

Desktop Apps

Desktop app diagnosis is under-investigated

An example of existing causal tracing

6

*Figure from Panappticon for Android system

Input Update

UI thread

AsyncTask

Service

Work Thread

RPC block

IO block

UpdateExecution segment
Edges

Existing causal tracing fails to diagnose
desktop apps

7

Chromium

Owly

System Preferences

fontd main thread

fontd worker thread

Asynchronous function
Execution of async function

 It is hard to identify accurate execution segment boundaries in some threads
 Some execution segments have multiple incoming edges (large search space)

Execution segment

Edges

Batch processing

8

Where are the inaccuracies from?
Over-connections: unnecessary searching paths

Batch processing

Piggyback optimization

Superfluous thread wake-up (mutual access VS causality)

…

Under-connections : missing edges

ad-hoc sync with data flags

Data dependencies

…

Why the inaccuracies happen to the
desktop apps?

9

Existing causal tracing assumptions

 White-box annotation

 Known programming paradigms

 Desktop apps

 Closed sourced components 
(Inaccurate execution segment boundaries)

 Various custom programming paradigms
(multiple incoming edges) 

VS

Can we fix all inaccuracies with additional tracing in desktop apps?

hard to define all programming paradigms correctly

overhead

Critical path is sensitive to graph inaccuracy

10

Chromium

Owly

SystemPreferences

fontd main thread

fontd worker thread

Batch processing

 The result of critical path analysis is easily distorted by inaccurate graphs

Execution segment

Edges

Key insights

Tracing graphs from existing causal tracing are not accurate enough to
effectively diagnose performance issues in desktop applications.

Completely eliminating inaccuracies is impractical, we should make
causal tracing and diagnosis algorithm inaccuracy-tolerant.

11

Argus workflow

12

Time Event Attr1 Attr2 …
30.4 sendMsg port1 port2
31.7 wakeUp tid0 tid3
33.2 wakeUp tid2 tid1
….

Trace logs

Argus Grapher

annotated

trace graph

Argus Debugger

beam search

diagnosis

Root cause vertex
(1)Costly operations
(2)Culprit event sequences
(3)Call stacks

Argus Tracer

Instrumented OS

Instrumented core libraries

Third-party libraries …

helper 1 daemon 1 daemon 2

Annotated tracing graphs

13

An example of edge annotation to mitigate over-connections

split

fontd worker

Chromium

Owly

SystemPreference

Chromium

Chromium

fontd worker Owly

Chromium
SystemPreference

Chromium

fontd main thread

execution segment

edge

execution segment

edge weak edge
boosted weak edge

strong edge

Chromium

Annotated tracing graph

14

Chromium

Owly

SystemPreferences

fontd main thread

fontd worker thread

 Back to the Chromium case

Batch processing

anomaly segment

Causal search: beam search based
 Expanding phase : explore all possible paths

 Pruning phase : select paths based on

15

expandexpand

anomaly segment

prune beam width = 2
lookback steps = 2prune

weak edge
boosted weak Ege
strong edge
execution segment
selected state

Sub-graph comparison
 Diagnosing the complicated performance issue in Chromium

why a similar vertex to A does not appear in the anomaly graph

16

fontd

Chromium
renderer

Chromium
browser

E A

B

C

D

fontd

Chromium
browser

E*: timed out wait

Chromium
renderer J: semaphore wait

anomaly sub-graph normal sub-graph (baseline)

weak edge
boosted weak Ege
strong edge
vertex

Real world performance issues
ID App Bug Descriptions Age
B1 Chromium Typing non-English in searchbox, page freezes. 7 yr
B2 TeXstudio Modifying Bib file in other app gets pinwheel. 2 yr
B3 BiglyBT Launching BiglyBT installer gets pinwheel. 1 yr
B4 Sequel Pro Reconnection via ssh causes freeze. 4 yr
B5 Quiver Pasting a section from webpage as a list freezes. 5 yr
B6 Firefox Connection to printer takes a long time. 1 mo
B7 Firefox Some website triggers pinwheel in the DevTool. 3 yr
B8 Alacritty Unresponsive after a long line rendering. 6 mo
B9 Inkscape Zoom in/out shapes causes intermittent freeze. 1 yr
B10 VLC Quick quit after playlist click causes freeze. 7 mo
B11 QEMU Unable to launch on macOS Catalina. 1 mo
B12 Octave Script editing in GUI gets pinwheel. 2 yr

17
* Diagnosis runs on binary releases even though some apps are open-sourced.

Evaluation 1: diagnosis effectiveness

18

✓ ✓ ✓ ✓ ✓
✓ ✓ ✓ ✓

✓ ✓
✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Tool B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 Total

spindump X X X X X X X 5/12

Instruments X X X X X X X X 4/12

AppInsight X X X X X X X X X X 2/12

Panappticon X X X X X X X X 4/12

Argus 12/12

Evaluation 2: diagnosis cost

19

Time cost of Argus on diagnosing the 12 real world performance issues

Evaluation 3: tracing overhead

20

a: webrtc

b: dromaeo

c: blink_perf

d: speedometer

e: octan.desktop

f: memory_desktop

g:
smoothness.oop_rasterization.top_25
_smooth

h: v8.browsing_desktop

I: page_cycler_v2.typical_2

j: dummy_benchmark.histogram

k: system_health.memory_desktop

l: loading.desktop.network_serv

m: rasterize&record_micro.top_25

< 5%

Conclusions
Diagnosing performance issues in desktop is important but was under-investigated

Existing causal tracing is inaccurate when applied to desktop apps

Finding 1: both over-connections and under-connections exist, and several
programming patterns can lead to the inaccuracies

Finding 2: diagnosis algorithm needs to tolerate inaccuracies

We design Argus, an annotated causal tracing tool for diagnosing performance
issues on desktop apps using inaccuracy-tolerant diagnosis algorithm.

Source code is available https://github.com/columbia/ArgusDebugger

21

Related work

 Distributed systems

 Magpie [OSDI’04] , XTrace [NSDI’07], Dappa[GoogleTechReport 2010],
Pivot[SOSP’15], Canopy[SOSP’17], BaggageContext[EuroSys’18]

 Mobile Apps

 AppInsight[OSDI’12], Panappticon[CODES+ISSS’13]

 Performance profiling

 Gprof[SIGPLAN’82], COZ[SOSP’15], D4[PLDI’18]

22

