
Efficient Reproduction of Fault-Induced
Failures in Distributed Systems with

Feedback-Driven Fault Injection
Jia Pan, Haoze Wu, Tanakorn

Leesatapornwongsa, Suman Nath, Peng Huang

Reproducing Distributed System Failure Is Hard

50%

30%

20%

Coding Design Debugging

69%

31%

Fixing Failure Reproduction

2Pensieve: Non-Intrusive Failure Reproduction for Distributed
Systems using the Event Chaining Approach, Zhang et al., 2017

A Real-World Failure: HBase-25905

User Ticket: HBase stuck, here’s my log

Developer
I will try reproducing

HBase

log

Write

3

A Real-World Failure: HBase-25905

OK. Try kill during WAL Append

But cannot reproduce…

Root cause not readily available

Developer

[ERROR] WAL Append Timeout

log

4

A Real-World Failure: HBase-25905

Developer

During the next 19 days

log
[Info]: Exception X in DISK I/O

[Info]: Exception Y in Network I/O

…

tolerated N times

tolerated M times

×
×

Knowing which external fault is necessary

Any of those exception could be root cause

5

A Real-World Failure: HBase-25905

Developer

During the next 19 days

HBase

Exception in channelRead0() seems interesting

channelRead0()hdfs_read()

hdfs_write()

...()

Log: WAL
Append Timeout

? But which invocation?

Timing is important

throw

Many callers

Many invocations

6

⟹

A Real-World Failure: HBase-25905

Developer

19 days later

7

HBase

channelRead0()

hdfs_write()

Log: WAL
Append Timeout

WAL roll over⟹

One specific time

Disconnected temporarily
throw

Edge case bug

⟹ Finally found & fixed
Symptom

Existing Work

Reproduce the input (external API) for a given failure
• Not suitable for fault-induced failures

Fault injection testing and chaos engineering
• Only for bug finding

Record and replay
• Intrusive and high runtime overhead

8

Our Goal

9

Reproduce a specific fault-induced
failure quickly without runtime overhead

System codeProduction log Workload

Failure
symptom

oracle
Anduril SystemFault

injection
(reproduced)

Challenges

Faults buried inside logs

‣ Tolerated faults introduce many
noises in the production log

‣ An error message may miss key
stack traces

Exploding injection space

‣ 18 K – 28 K static fault sites
(program points in system code)

‣ 1 K+ occurrences in some fault site

‣ Need to find the root-cause fault
site and proper timing

10

Inefficient to enumerate all possibilities

Key Ideas of Anduril

Prune fault sites that are irrelevant to
a given failure
‣ Static causal graph consisting of

program points potentially related to
the failure symptom

11

Iteratively search in the injection
space through feedback
‣ Multi-round feedback algorithm

dynamically adjusting the priorities of
the fault candidates to try next

Deprioritize Similar Faults If One Injection Fails

12

f1
f2 f3 f4

f5f6

f7

f8

‣Insight: Many faults have same effect
— Fault traits

: fault sitefi

same

Deprioritize Similar Faults If One Injection Fails

13

f1
f2 f3 f4

f5f6

f7

f8

‣Insight: Many faults have same effect
— Fault traits

‣Prioritize faults based on their traits

: fault sitefi

Trait-based Fault-site Grouping

Deprioritize Similar Faults If One Injection Fails

14

f1
f2 f3 f4

f5f6

f7

f8

‣Insight: Many faults have same effect
— Fault traits

‣Prioritize faults based on their traits

: fault sitefi

injecting f5

Trait-based Fault-site Grouping

Deprioritize Similar Faults If One Injection Fails

15

f1
f2 f3 f4

f5f6

f7

f8

‣Insight: Many faults have same effect

‣Prioritize faults based on their traits

‣If injecting one fault did not trigger the
failure, other faults sharing the same
traits also likely won’t reproduce it : fault sitefi

 cannot
reproduce
the bug

f5

Trait-based Fault-site Grouping

Deprioritize Similar Faults If One Injection Fails

16

f1
f2 f3 f4

f5f6

f7

f8

‣Insight: Many faults have same effect

‣Prioritize faults based on their traits

‣If injecting one fault did not trigger the
failure, other faults sharing the same
traits also likely won’t reproduce it : fault sitefi

Group
deprioritized

 cannot
reproduce
the bug

f5

Trait-based Fault-site Grouping

Complete execution state (PC, stack trace, memory)?
• Too expensive to track
• Severely slow down failure reproduction

Triggered try-catch blocks?
• Still require intrusive online recording

Define Fault Traits

17

try {
 …
} catch (…) {
 // handling logic
}

Use log messages to approximate fault traits
• No additional runtime overhead
• Enable static estimation of the unexplored faults’ traits
• Abstract high-level system state from low-level execution details

Define Fault Traits

18

f4 [Warn]:Bad thing happens

Fault 4 Fault 4’s Trait

Identifying Relevant Traits

‣ Standard diff does not work:

• Concurrency: log messages interleave across runs

• Timestamp makes each log message appears unique

‣ Solution: Sanitize and partition logs by thread before diff
19

Failure production log Normal run’s log

Diff

Relevant traits
Some log messages not relevant to the failure

[Warn]: Exception Y

[Info]: …

[Warn]: Exception Y

[Info]: …

[Info]: Exception X [Info]: Exception X

Workflow of Anduril

Instrumenter

Causal Graph

20

Failure
Log

System
Code

Feedback
Loop

Update
Priorities

Inject Fault
Location & Time

Observe
Symptom

Decide

Run

Bug not
reproduced

Instrumented Code

Reproduced

Root-cause
fault

Diffs of <failure
log, run_i log>

Static Causal Graph
channelRead(x) {

 socket.read();

}

try {

 channelRead(…)

} catch(…) {

 log(“bad”)

}

External exceptione4

21

Objective:
• Identify which faults may cause

a fault trait

Computed recursively
• Use “jump” strategy proposed

in Pensive for scalability

• May introduce false edges

• Rely on dynamic feedback to
address them e1 Trait

Static Causal Graph
channelRead(x) {

 socket.read();

}

try {

 channelRead(…)

} catch(…) {

 log(“bad”)

}
e1

Handler evente2

External exceptione4

Trait

22

Objective:
• Identify which faults may cause

a fault trait

Computed recursively
• Use “jump” strategy proposed

in Pensive for scalability

• May introduce false edges

• Rely on dynamic feedback to
address them

Static Causal Graph
channelRead(x) {

 socket.read();

}

try {

 channelRead(…)

} catch(…) {

 log(“bad”)

}
e1

Handler evente2

e3 Internal exception

External exceptione4

Trait

23

Objective:
• Identify which faults may cause

a fault trait

Computed recursively
• Use “jump” strategy proposed

in Pensive for scalability

• May introduce false edges

• Rely on dynamic feedback to
address them

Static Causal Graph
channelRead(x) {

 socket.read();

}

try {

 channelRead(…)

} catch(…) {

 log(“bad”)

}
e1

Handler evente2

e3 Internal exception

External exceptione4

Trait

24

Objective:
• Identify which faults may cause

a fault trait

Computed recursively
• Use “jump” strategy proposed

in Pensive for scalability

• May introduce false edges

• Rely on dynamic feedback to
address them

Check the paper for details!

Feedback Algorithm
How to update priority?

25

f1
f2 f3 f4

f5f6

f7

f8
Group
deprioritized

Priority 1: Trait priority Idea: Less-explored trait should have higher
priority

Trait has priority

Increments for each unsuccessful trial

Smaller higher priority

ok Ok

Ok

Ok ⇒

Feedback Algorithm
How to update priority?

26

Priority 2: Fault site priority

Handler event
Internally excepted

External exception

e1 e2 e3 e4

Trait

Ideal world:

Feedback Algorithm
How to update priority?

27

Priority 2: Fault site priority

o1 e3

e2

e1

f1e4

f2

o2 e5

Trait

Fault site
Reality:

Problem: 1) trait & fault has uncertain mapping

 2) branching wastes attempts

Feedback Algorithm
How to update priority?

28

Priority 2: Fault site priority

o1 e3

e2

e1

f1e4

f2

o2 e5

Trait

Fault site

L1,2 = 2

L1,1 = 4

Introduce spatial distance
Li,k

Shorter distance

 More likely direct cause

 Less wasted attempts

 Faster exploration

⇒
⇒
⇒

Feedback Algorithm
How to update priority?

29

Priority 3: Fault instance (timing) priority
T1,1,1 = 1

T2,1,1 = 0

Check the paper for details!

Idea: The closer a fault in log, the more
likely it is the cause

Introduce logic time distance :
number of logs between the log and
the fault

Ti,j,k

Feedback Algorithm: Putting Together

Fi,j = (mink(Ok + Li,k), Ti,j,argmink(Ok+Li,k))

30

Primary: best fault site Secondary: best occurrencePriority sorting:

User customizable priority formula using Ok, Li,k, Ti,j,k

Anduril used priority:

User customizable priority formula using Ok, Li,k, Ti,j,k

Fi,j = (mink(Ok + Li,k), Ti,j,argmink(Ok+Li,k))

31

Primary: best fault site Secondary: best occurrencePriority sorting:

Anduril used priority:

Updated by feedback loop

Ok Ok

Feedback Algorithm: Putting Together

Experiment Setup

32

System LOC Fault sites Fault instances # Sampled
ZooKeeper 148 K 572 3 K 4

HDFS 769 K 4,761 73 K 7
HBase 930 K 2,905 106 K 6
Kafka 184 K 1,134 423 K 3

Cassandra 230 K 1,258 2023 K 2

Evaluate on 5 large real-world distributed systems

Collect 40 real-world failures

Sample 22 for reproduction (I/O fault-related)

Efficacy of Failure Reproduction

33

Effectiveness: Anduril reproduced all 22 sampled cases

Efficiency: Anduril takes 2~445 minutes.

• For 6 cases with known developer effort: manually take ~136 hours.

Zookeeper

HDFS

HBase

Kafka

Cassandra

Average Time by System (min)
0 35 70 105 140

52 min
8 min

138 min
43 min

2 min

Anduril is more efficient
than manual

Evaluation: Comparison with SOTA

34

#R
ro

du
ce

d

0
1
2
3
4
5
6
7

Anduril Fate Crashtuner

Zookeeper HDFS HBase Kafka Cassandra

Anduril is more effective than SOTA

Compare with SOTA work Fate and Crashtuner

Total: 22 Total: 3 Total: 4

Evaluation: Effect of Feedback

35

It took 18 rounds to prioritize the root-
cause fault’s rank from initial 140 to 20

Conclusion

Anduril: A fault injection tool designed to efficiently reproduce fault-
induced failures in deployed distributed systems

• Use static causal reasoning to prune fault sites

• Use a novel dynamic feedback-driven injection algorithm to search for
the root-cause fault and timing in a large fault space

36

https://github.com/OrderLab/Anduril

https://github.com/OrderLab/Anduril

