Efficient Reproduction of Fault-Induced
Failures in Distributed Systems with
Feedback-Driven Fault Injection

Jia Pan, Haoze Wu, Tanakorn
Leesatapornwongsa, Suman Nath, Peng Huang




Reproducing Distributed System Failure Is Hard

@® Coding @ Design { Debugging ® Fixing ¢ Failure Reproduction

Pensieve: Non-Intrusive Failure Reproduction for Distributed 2
Systems using the Event Chaining Approach, Zhang et al., 2017



A Real-World Failure: HBase-25905

1 .
X HBase
User Ticket: HBase stuck, here’s my log
|

09

Developer
| will try reproducing




A Real-World Failure: HBase-25905

n [ERROR] WAL Append Timeout

OK Try kill during WAL Append
y Kl GHHnS PP Developer
But cannot reproduce

f Root cause not readlly avallable |



A Real-World Failure: HBase-25905

During the next 19 days

[Info]: Exception X in DISK I/O tolerated XN times
[Info]: Exception Y in Network I/O  tolerated XM times

Developer
Any of those exception could be root cause

- Knowing which external fault is necessary




A Real-World Failure: HBase-25905

During the next 19 days

Exception in channelRead?() seems interesting ‘

hdfs_write()

. Developer
hdfs_read() > channelRead@() . Log: WAL.
/ throw Append Timeout
.0 >

ich | ion?
Many callers But which invocation”

Many invocations

- Timing is important



A Real-World Failure: HBase-25905

19 days later

hdfs_write() One specific time

N\

channelRead@() Disconnected temporarily
throw

3,

Developer

—> WAL roll over J@i Edge case bug

Log: WAL Finally found & fixed
Symptom

Append Timeout



Existing Work

Reproduce the (external API) for a given failure
e Not suitable for fault-induced failures

Fault injection testing and chaos engineering
e Only for bug finding

Record and replay
e |ntrusive and high runtime overhead



Our Goal

Reproduce a specific fault-induced

'~ failure quickly without runtime overhead

Productionlog  System code Workload

\ ' kk

T LA [
HBARSE

Failure
symptom
oracle

injection

(reproduced)



Challenges

\

Exploding injection space ocl=| Faults buried inside logs

> static fault sites

(program points in system code) > Tolerated faults introduce many

noises in the production log

> occurrences in some fault site _
> An error message may miss key

stack traces
> Need to find the root-cause fault

site and proper timing

Inefficient to enumerate all possibilities

10



Key Ideas of Anduril

Prune fault sites that are irrelevant to Iteratively search In the injection

a given failure space through feedback
» Static causal graph consisting of > feedback algorithm
program points potentially related to dynamically adjusting the priorities of

the failure symptom the fault candidates to try next

11



Deprioritize Similar Faults If One Injection Fails

*Insight: Many faults have same effect
— Fault traits

J7

f.: fault site

12



Deprioritize Similar Faults If One Injection Fails

*Insight: Many faults have same effect
— Fault traits

»® ® o
fy @ @

*Prioritize faults based on their traits

J7

f.: fault site

Trait-based Fault-site Grouping

13



Deprioritize Similar Faults If One Injection Fails

*Insight: Many faults have same effect
— Fault traits

hoog @ injecting fs

S
@ *Prioritize faults based on their traits

Jo

J7

f.: fault site

Trait-based Fault-site Grouping

14



Deprioritize Similar Faults If One Injection Fails

£ cannot *Insight: Many faults have same effect
5

reproduce

f h D, . .
fi 2 £ @ @bug *Prioritize faults based on their traits

Jo

*|f Injecting one fault did not trigger the
failure, other faults sharing the same
f;: fault site traits also likely won’t reproduce it

Trait-based Fault-site Grouping

15



Deprioritize Similar Faults If One Injection Fails

£ cannot *Insight: Many faults have same effect
5

reproduce
x the bug

*Prioritize faults based on their traits

Group

deprioritized *If injecting one fault did not trigger the

failure, other faults sharing the same
f;: fault site traits also likely won’t reproduce it

Trait-based Fault-site Grouping

16



Define Fault Traits

Complete execution state (PC, stack trace, memory)?

Triggered try-catch blocks? try 1

}catch (...) {
// handling logic
J

17



Define Fault Traits

Fault 4 Fault 4’s Trait

[Warn]:Bad thing happens

Use log messages to approximate fault traits
* No additional runtime overhead
e Enable static estimation of the unexplored faults’ traits

* Abstract high-level system state from low-level execution detaills

18



ldentifying Relevant Traits

Some log messages not relevant to the failure

Failure production log Normal run’s log

[Info]: Exception X l

[Warn]: Exception Y [Warn]: Exception Y

Diff
» Standard diff does not work:
e Concurrency: log messages interleave across runs

Relevant traits

[Info]: Exception X

o [Imestamp makes each log message appears unigque

» Solution: Sanitize and partition logs by thread before diff

19



Workflow of Anduril

Failure System
Log Code

} P Instrumenter
: [LOG]=| { } s /
il Decide

)

N

Causal Graph Instrumented Code

Inject Fault
Location & Time

Update

Prlorltles

Diffs of <failure
Feedback log, run_j log>

Loop
Bug not
reproduced

Observe
Symptom

Reproduced

Root-cause

fault
20



Static Causal Graph

Objective: channelRead(x) {
+ Identify which faults may cause | S0cket.reads | @) Externa exception{;
a fault trait } |

Computed recursively |

e Use “jump” strategy proposed | trY 1

N Pensive for scalability channelRead(...)
* May introduce false edges 1 catch(.) {
e Rely on dynamic feedback to . log(“bad”)

address them




Static Causal Graph

Objective: channelRead(x) {
+ Identify which faults may cause | S°C<€t-readCs | @) External exception/l;i
a fault trait } |

Computed recursively %

e Use “jump” strategy proposed | trY 1
N Pensive for scalability channelRead(...)
e May introduce false edges
Y Y ¥ catch(.) 1 Handler event
e Rely on dynamic feedback to . log(“bad”)

address them Trait




Static Causal Graph

Objective: channelRead(x) {
+ Identify which faults may cause | S°C<€t-readCs | @) External exception/l;i
a fault trait } |

Computed recursively %

e Use “jump” strategy proposed | trY 1
in Pensive for scalability Internal exception
 May introduce false edges
y J + catchC.) 4 Handler event
e Rely on dynamic feedback to . log(“bad”)

address them Trait




Check the paper for details!

Static Causal Graph

Objective: channelRead(x) {
+ Identify which faults may cause | S°C<€t-readCs | @) External exception{;
a fault trait } |

Computed recursively %

e Use “jump” strategy proposed | trY 1
in Pensive for scalability Internal exception
 May introduce false edges
y J + catchC.) 4 Handler event
e Rely on dynamic feedback to . log(“bad”)

address them Trait




How to update priority?

Priority 1: Trait priority

deprioritized

Feedback Algorithm

Idea: Less-explored trait should have higher
priority

Trait 0, has priority O,
Increments O, for each unsuccessful trial

Smaller O, = higher priority

25



Feedback Algorithm

How to update priority?

Priority 2: Fault site priority

ldeal world:

20



Feedback Algorithm

How to update priority?

Priority 2: Fault site priority

Reality: /_'»‘ﬁ/’i ®
. ‘ Fault site

Trait / ‘
e

27



Feedback Algorithm

How to update priority?

Priority 2: Fault site priority

QJ=4

, f
‘ ‘ Fault site
h
Trait "
®—©o

L1,2 - 2

Introduce spatial distance
L-, L

l

Shorter distance
= More likely direct cause
= Less wasted attempts

= Faster exploration

28



Feedback Algorithm

How to update priority?

Priority 3: Fault instance (timing) priority

Idea: The closer a fault in log, the more
likely It Is the cause

execution
time

Introduce logic time distance T;; ..

number of logs between the log and
the fault

Check the paper for details!

29



Feedback Algorithm: Putting Together

User customizable priority formula using Oy, L; 4, 1 ;

Anduril used priority:

— (mlnk(Ok + L, k) LJ,argmim(O+L; k))

/ \

Priority sorting: Primary: best fault site Secondary: best occurrence

30



Feedback Algorithm: Putting Together

User customizable priority formula using Oy, L; 4, 1 ;

Anduril used priority:

— (mlnk(Ok T Ll k) LJ,argmim(O+L; k))

/ \

Priority sorting: Primary: best fault siie Secondary: [fest occurrence

- Updated by feedback loop /

31



Experiment Setup

Evaluate on 5 large real-world distributed systems

Collect 40 real-world failures

Sample 22 for reproduction (I/0O fault-related)

System LOC Fault sites Fault instances # Sampled
Z0ooKeeper 148 K 572 3 K 4
HDFS 769 K 4,761 73 K 7
HBase 930 K 2,905 106 K 6
Kafka 184 K 1,134 423 K 3
Cassandra 230 K 1,258 2023 K 2

32



Efficacy of Failure Reproduction

Effectiveness: Anduril reproduced all 22 sampled cases
Efficiency: Anduril takes 2~445 minutes.

» For 6 cases with known developer effort: manually take ~136 hours.

Zookeeper |2 min
HDFS
HBase
Kafka

Average Time by System (min)

‘Anduril iIs more efficient
Cassandra f than manual
0 35 70 105 140

33



Evaluation: Comparison with SOTA

Compare with SOTA work Fate and Crashtuner

" Zookeeper [ HDFS | HBase [ Kafka [ Cassandra

#Rroduced
O -~ N W &~ OO0 N

Crashtuner

| * Anduril is more effective than SOTA ‘

34



Evaluation: Effect of Feedback

Rank of root
cause fault

140 -
120 -
100 -

H O 0
o O O
I

N
-
1

123456 7 8 9101112131415161718
Round

It took 18 rounds to prioritize the root-
cause fault’s rank from initial 140 to 20

35



Conclusion

Anduril: A fault injection tool designed to efficiently reproduce fault-
iInduced failures in deployed distributed systems

* Use static causal reasoning to prune fault sites

e Use a novel dynamic feedback-driven injection algorithm to search for
the root-cause fault and timing In a large fault space

@‘5':‘ g0
SR

@’Q‘”@"

36

https://github.com/OrderLab/Anduril



https://github.com/OrderLab/Anduril

