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Abstract
Training large language models (LLMs) at scale requires
parallel execution across thousands of devices, incurring
enormous computational costs. Yet, these costly distributed
trainings are prone to correctness bugs, causing silent errors
and potentially wasting millions of GPU hours. These bugs
are challenging to expose through testing.

We introduce TrainVerify, a system for verifiable dis-
tributed training of LLMs to eliminate parallelization bugs.
Given a deep learning model’s logical specification as the
ground truth, TrainVerify formally verifies that a distributed
parallel execution plan is mathematically equivalent to it.
Direct verification is notoriously difficult due to the sheer
scale of LLMs which often involves billions of variables and
highly intricate computation graphs. Therefore, TrainVerify
introduces a stage-wise parallel verification algorithm and
shape-reduction techniques that significantly reduce complex-
ity while preserving formal correctness. TrainVerify scales
to frontier LLMs, including the successful verification of the
Llama3 405B and DeepSeek-V3 671B training plans.

CCS Concepts: • Computing methodologies→Machine
learning; • Software and its engineering→ Software veri-
fication.

Keywords: deep neural network, model parallelization, equiv-
alence checking, formal verification, symbolic execution
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1 Introduction
Recent studies show that scaling a deep neural network (DNN)
generally yields better performance [46]. This triggers an
“arms race” for large models. Training large models requires
extensive resources, necessitating distributed training over a
growing number of GPUs [26, 27, 38]. Latest large language
models (LLMs), for instance, are trained on clusters with
thousands to tens of thousands of high-end GPUs for several
weeks or months, costing millions of dollars [8, 34, 38].

Distributed training, however, is notoriously complex. It re-
quires intricate spatial-temporal scheduling and coordination
across a large set of devices using sophisticated parallelism
techniques [48, 52, 65, 83]. The entire workflow is error-prone
(§2.2). Worse still, the bug symptoms are often silent, such as
causing wrong gradient updates and improper scaling of the
model states, which are difficult to detect and debug.

In this context, the cost of bugs becomes particularly high.
Even a single bug can lead to wasting significant resources,
financial loss, and low productivity for developers [17, 38].
Moreover, an incorrectly trained model can have far-reaching
consequences, especially in critical applications where model
accuracy is paramount [37, 45, 68].

Given the high stakes, there is an urgent need to verify
the correctness of distributed training. To achieve this goal,
one option is to design a new training software stack that is
correct-by-construction. While ideal, this is a daunting task
from a verification perspective. Large-scale training involves a
myriad of external dependencies as well as high concurrency,
both of which are challenging to verify [1, 9, 32, 80, 82]. The
incompatibility with well-established training libraries [2, 21]
and potential performance loss will also pose practical barriers.

In this work, we explore an alternative direction and pro-
pose a methodology that aims to provide strong correctness
guarantees without rebuilding the whole training stack.

Our key insight is that the correctness of distributed training
can be rigorously verified at the level of execution plans. By
establishing what we call parallelization equivalence, we
prove that the execution plan of a DNN model is equivalent
to its logical definition. In other words, for every input, the
distributed execution must yield an output equivalent to that
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of the original model. This verifiability is achieved without
running the training task at full scale.

Specifically, the logical definition of a DNN model can be
represented as a data flow graph (DFG), where a node repre-
sents an operator like matrix computation, and an edge denotes
a tensor produced by its upstream operators and consumed
by its downstream operators. This representation is logical
because operators and tensors are described mathematically.
This logical form is usually scrutinized through rigorous math
reasoning and empirical validations, providing assurance of
correctness [75]. When developers define a model in code,
deep learning frameworks still internally use or provide ways
to expose a DFG representation [71, 72].

The parallelization of a model decides how operators and
tensors in the model are partitioned and scheduled across
devices using parallelism techniques. This implementation
logic is captured by a materialized execution plan [52], which
can be structured as a parallelized DFG. Training systems use
this plan to orchestrate the execution of a training task.

Parallelization equivalence guarantees that, for any input,
the parallelized DFG yields outputs equivalent to those of the
logical DFG. Focusing on this property allows the verification
effort to be manageable. It also supports existing frameworks,
which makes the approach practical. At the same time, since
the execution plan captures the essence of how a training task
is parallelized, proving this property eliminates major classes
of bugs that jeopardize the correctness of distributed training,
providing strong guarantees (§8.3).

Several key research challenges arise: (1) how to formulate
the verification problem? (2) what representation to use to
carry out the verification? (3) how to scale the verification to
large DNNs that have hundreds of billions of parameters?

To address these challenges, we first formally define paral-
lelization equivalence and its verification (§3). We then design
TrainVerify with multiple techniques to address the needs
of representation and scalability.

• Symbolic DFG (§5.1): TrainVerify defines symbolic op-
erators that encapsulate the mathematical foundations of
modern deep learning operations. It converts a logical model
and its execution plan into symbolic dataflow graphs and
verifies the equivalence between these two representations.
• Staged verification (§5.2) addresses the intractability of ver-

ifying long symbolic expressions in DNNs by partitioning
the DFGs into stages, each treated as a separate verification
unit and verified concurrently. TrainVerify then chains
these units into an end-to-end proof by verifying input-
output equivalence for the dependent units and leveraging
lineage metadata to ensure correctness across the entire
network.
• Shape reduction (§5.3) mitigates scale explosion in large

models by reducing tensor shapes while preserving their
structural and functional properties. It enables verification

on smaller, manageable shapes and provably extends the
results to larger shapes with the same structure.

To our best knowledge, TrainVerify is the first to offer
provably correct execution plans for distributed training. It has
been integrated into nnScaler [52], a state-of-the-art training
framework. We identify the changes needed to make nnScaler
amenable to verification. Specifically, we enhance the DFGs
to incorporate all training-related computations. In addition,
verification requires lineage to effectively map tensor values
between the logical DFG and its parallelized counterpart. This
information is discarded after parallelization in nnScaler, but
is preserved in TrainVerify to enable equivalence checking.

Experiments show that TrainVerify successfully verifies
the executions plans for state-of-the-art large language models,
Llama3 (8B/70B/405B) [38] and DeepSeek-V3 (16B/236B/
671B) [36]. The verification finishes within minutes to hours
for small and medium models, and up to half a day for
the largest models. We also show that TrainVerify can
detect and eliminate major classes of real-world parallelization
bugs in distributed training. TrainVerify is open sourced at
https://github.com/verify-llm/TrainVerify.

2 Background and Motivation
2.1 Distributed Training
At a high level, distributed training partitions the computa-
tional operations over high-dimensional data into multiple
operations over smaller data, schedules the partitions among
multiple devices spatially, executes them in a specific order
temporally, and synchronizes state across different devices.

Different parallelization approaches exist, including data
parallelism, tensor parallelism, and pipeline parallelism [6, 41,
67]. Large-scale training commonly employs a combination
of these techniques, such as 3D parallelism [30, 38].

To parallelize a specific model, ML engineers typically
adapt or handcraft detailed parallelization code on top of a li-
brary (e.g., Megatron-Core [9]) that provides APIs for common
parallelism techniques. Recent training frameworks [52, 83]
also explore the search space automatically to generate effi-
cient parallelization strategies for a given model. To produce
a valid distributed program, they operate on computation
graphs and apply a series of graph transformation passes,
including partitioning tensors and operators, assigning them
to devices, injecting inter-device communication and planning
the execution schedule.

2.2 Error-Proneness of Parallelization
Distributed training is inherently error-prone due to its sig-
nificant complexities. It requires correctly partitioning the
operators and tensors, scheduling them into the right devices,
inserting proper communication operators, coordinating exe-
cution in the right order, and ensuring that all of this preserves
the original model’s semantics under diverse training configu-
rations and parallelization schemes.
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Cause MegatronLM DeepSpeed nnScaler
op-transformation 16 18 19
scheduling 4 1 4
communication 8 13 5

Total 26 28 25

Table 1. Parallelization-specific bugs in distributed training systems,
based on commit logs and GitHub issues (categories may overlap).

Indeed, as Table 1 shows, we study three state-of-the-art
distributed training systems [52, 66, 67] and find that they
all encounter bugs specific to parallelization in nearly every
aspect of the workflow. For instance, in distributed data loaders,
bugs can cause improper slicing and uneven distribution of
global batches [5]. In forward and backward propagation,
an operator can be incorrectly transformed, or a tensor can
be improperly partitioned [16]. Similarly, the calculation of
metrics such as loss averaging and gradient norms can be
affected if tensor shards are mistakenly treated as replicated
or partitioned [4, 10, 15, 17]. Pipeline scheduling can also
misorder operators from different micro-batches or misallocate
gradient updates [11, 13, 14]. In addition, a synchronization
step may miss or use incorrect communication operations,
e.g., assigning wrong GPU ranks as sources or destinations,
or using the wrong type of primitive [3, 12, 18, 19].

2.3 The Need for Rigorous Parallelization
What makes parallelization errors particularly concerning is
that they are often silent, so the training appears deceptively
normal, and the impact only becomes apparent later. For
instance, incorrect gradient synchronization might only affect
certain layers. These errors can evade detection until weeks
into training, wasting valuable resources. Such errors are also
challenging for developers to diagnose and debug. For example,
a subtle incorrect loss scaling bug in MegatronLM took
developers and users months of discussions to pinpoint [17].

It is also challenging for traditional testing to expose paral-
lelization bugs. Deep learning relies on floating-point compu-
tation, which naturally introduces value drift during parallel
training due to variations in the order of operations [69, 79].
This drift is exacerbated by mixed-precision training, which
employs low-precision data types, and the use of diverse kernel
implementations for the same operator due to efficiency. The
numerical instability makes it challenging to distinguish nor-
mal numerical noise from actual errors, undermining methods
like differential testing that directly compare numerical results
between unparallelized and parallelized training [56, 58]. For
large-scale training that involves thousands of GPUs, it is also
infeasible to obtain another full-scale single-device training
result for comparison. Using a smaller-scale testing can easily
miss bugs that only appear in full-scale training.

Given the importance of distributed training, the financial
costs of training failures, the consequences of an incorrectly
trained model, as well as the challenges in detection and
diagnosis, it is imperative to provide formal correctness guar-
antees for parallelization. In other words, we should aim for
eliminating parallelization bugs.

2.4 Insight: Verifying Parallelization Equivalence

While verifying the entire distributed training stack would
be ideal, doing so is impractical. The stack includes numer-
ous interacting components such as DNN compilers, kernel
libraries, collective-communication runtimes, etc., each of
which is complex and often depends on opaque hardware
vendor code [1, 9, 32, 80, 82]. The efforts required for veri-
fication would be prohibitively high, and compatibility and
performance will also likely be sacrificed. Moreover, new
parallelism techniques and operator optimizations emerge
rapidly, making it difficult to maintain the verified system.

To alleviate this complexity, our key insight is that crucial
correctness of distributed training resides in the execution
plan—a representation of a full training iteration of the dis-
tributed model—generated by the parallelization framework.
Once the plan is fixed, subsequent runtime merely executes the
prescribed operations. Based on this insight, we shift the veri-
fication focus from the system to parallelization equivalence
(PE): the execution plan is equivalent to the model’s logical
definition. Both the execution plan and logical definition can
be represented as data flow graphs (DFGs). PE requires that
for all inputs, executing the parallelized DFG yields outputs
that are identical to those produced by the logical DFG.

This verification approach offers several benefits. First, it
can support existing training frameworks. As will be intro-
duced in §5.1, it mainly requires the framework to provide
a DFG representation for the parallel execution plus lineage
information. In our experience, this is not difficult. Second,
the state space to verify becomes more tractable. We reason
about one concrete plan each time, not the enormous space of
all possible plans. Third, the verification of execution plan is
less intrusive. Focusing on the output execution plan makes
verification largely agnostic to internal transformations, im-
proving transferability and robustness to framework evolution.
Moreover, PE reasoning is symbolic over real arithmetic,
making it immune to numerical noise. Finally, PE provides
strong correctness guarantees: it covers all admissible inputs,
and an execution plan faithfully captures the computation
and communication logic involved in a training iteration.
Frameworks such as Alpa [83] and nnScaler [52] further ma-
terialize an execution plan into executable code. If PE holds,
the distributed run is functionally indistinguishable from the
scrutinized logical model; if it fails, some bug must be present.
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1 def require_allreduce_dgrad(cfg) -> Bool: pass

2 def get_model_tp_group(cfg) -> ProcessGroup: pass

3 class LinearWithFrozenW(torch.autograd.Function):

4 def backward(self, gy):

5 gx = gy.matmul(self.w)

6 if require_allreduce_dgrad(self.cfg):

7 torch.distributed.all_reduce(gx,

8 group=get_model_tp_group(self.cfg))

9 return gx

Figure 1. Code snippet of a backward computation.

3 Parallelization Equivalence
In this section, we formulate and define the problem of verify-
ing parallelization equivalence.
Formulation. Let 𝑓 : X → Y denote a logical neural network
model, assuming for single-device execution.X andY denote
the universe of input and output tensors, respectively. A
parallelization procedureP(·) transforms 𝑓 into a model𝑔 that
executes on multiple devices. 𝑔 is parallelization equivalent
to 𝑓 iff ∀𝑥 ∈ X, 𝑔(𝑥) = 𝑓 (𝑥).

While the problem is theoretically broad and intractable—
𝑓 may involve arbitrary operators and P can be extremely
complex—it is constrained in practice. We focus on 𝑓 as valid
neural networks, e.g., transformer-based models, and P as
feasible parallelization plans.

Operations in 𝑓 include, but are not limited to, matrix
operations (Linear, MatMul, Transpose, Reshape), activations
(Softmax, SiLU), and others (Layernorm, Embedding). Paral-
lelizationP covers data parallelism [6], tensor parallelism [67],
pipeline parallelism [41, 61], and their combinations. Ex-
pert [64], context [55], and sequence [51] parallelisms fall
within our broader definition of tensor parallelism.P is applied
to 𝑓 by inserting partitioning and communication operators
(Chunk, AllReduce, AllToAll, etc).
Graph Representation. Both 𝑓 and 𝑔 can be encoded as data
flow graphs (DFGs), where nodes represent operators and
edges carry tensors. Then, the parallelization procedure P
transforms the logical DFG denoted as 𝐺𝑙 := (𝑉𝑙 , 𝐸𝑙 ) into a
parallelized DFG denoted as 𝐺𝑝 := (𝑉𝑝 , 𝐸𝑝 ), by partitioning
or replicating operators and tensors, and adding aggregation
and communication operators. P assigns and orders 𝐺𝑝 to
multiple devices. Let M : 𝐸𝑙 → 𝐸𝑝

N denote the mapping
between each logical tensor and its partitioned counterparts.

Definition 1 (Parallelization Equivalence). 𝐺𝑝 is paralleliza-
tion equivalent to𝐺𝑙 iff:∀𝑡 ∈ 𝐸𝑙 ,∀𝑥 ∈ X, 𝑡 (𝑥) =

⊕
𝑡𝑖 ∈M(𝑡 ) 𝑡𝑖 (𝑥),

where 𝑡 (𝑥) denotes the concrete value of a tensor 𝑡 given the
concrete input 𝑥 .

⊕
is a composition operation determined

by the parallelization scheme. In practice,
⊕

typically in-
stantiates as duplication (identity), all-reduce summation (+),
or tensor concatenation.

We refer to 𝐺𝑙 as logical model, and 𝐺𝑝 as the execution
plan for the distributed training task. Both encompass all

mat
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GPU0: DP0,TP0 GPU1: DP0,TP1 GPU2: DP1,TP0 GPU3: DP1,TP1

mat
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𝑔𝑦 𝑤

𝑔𝑥

logical graph parallelized graph

… … … …

……

…

def training_code_gpu3():
    model_tp_group = dist.new_group(ranks=[2,3])
    ... # upstream model code
    gy3 = ...
    w3  = ...
    gx3 = gy3.matmul(w3)
    dist.all_reduce(gx3,group=model_tp_group)
    ... # downstream model code

… … …

Figure 2. Logical and parallelized data flow graphs (simplified) for
Figure 1 and the distributed training code for GPU 3.

operations within a training iteration, including all micro-
batches’ forward passes, backward passes, optimizer steps,
and metric computations.
Example. To illustrate how parallelization equivalence applies
in practice, consider a custom autograd layer during back
propagation, shown in Figure 1. It multiplies the upstream
gradient 𝑔𝑦 with the fixed weight𝑤 to obtain the gradient 𝑔𝑥 .
Figure 2 depicts the corresponding logical DFG.

Assume we train the same layer on four GPUs using 2-way
data parallelism and 2-way tensor parallelism. Each GPU
computes a partial result 𝑟𝑖 for the partitioned tensors. As
Figure 2 shows, the parallelized DFG introduces an AllReduce

operation to aggregate 𝑟𝑖 across tensor-parallel replicas.
Parallelization equivalence asserts that all the following

algebraic equalities must hold for all valid inputs:
• 𝐸1 : 𝑔𝑦 [lower-half] == 𝑔𝑦2 + 𝑔𝑦3
• 𝐸2 : 𝑔𝑥 [lower-half] == 𝑟2 + 𝑟3
• 𝐸3 : 𝑔𝑥 [lower-half] == 𝑔𝑥2 == 𝑔𝑥3

These invariants are not just abstract properties; they capture
classes of real-world bugs. To name a few:
• Inconsistent tensor partitioning, due to bugs when producer

and consumer layers partition the same tensor inconsistently
1 . They will violate 𝐸1.

• Incorrect computation operator parallelization. For exam-
ple, if the operator is a custom operator, more complex than
MatMul, involving rank-dependent computation, computa-
tion logic bugs can easily occur in 2 , violating 𝐸2.
• Missing or wrong communication operator. For exam-

ple, if require_allreduce_dgrad mistakenly returns False,
the necessary AllReduce operation at 3 will be missing.
Similarly, incorrect primitives may be introduced, e.g.,
AllGather. All those cases will violate 𝐸3.
• Incorrect communication group. For example, get_model
_tp_group may be mistakenly assigned as a global group at
4 , i.e., (0,1,2,3). They will also violate 𝐸3.
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Figure 3. TrainVerify System Overview.

4 Overview of TrainVerify
To realize our verification methodology for DNN models in
practice, we develop TrainVerify, a system that provides
provably correct execution plans for distributed training.

As shown in Figure 3, developers write the code to describe
the logical definition of a neural network. This code is usually
device independent or assumes running on a single virtual
device with infinite power. The availability of a single-device
definition aligns with common development practices. Such
code essentially represents a mathematical form of the model
and can be rigorously scrutinized, reflecting the intended se-
mantics of the model. To scale training to multiple GPUs, de-
velopers create distributed training code, either implemented
or by leveraging auto-parallelization frameworks [52, 83].

TrainVerify works in three steps. It takes both versions
of training code as inputs and extracts two data flow graphs
(DFGs) ( 1 , 6 ) via tracing. Nodes in the DFGs represent
operations such as MatMul, AllReduce, etc., while edges carry
data tensors. One (logical) DFG defines the logical model,
while the other parallelized DFG encodes how the model is
partitioned and scheduled for distributed execution.

Next, TrainVerify symbolizes each graph by converting
tensors into symbolic ones, and executable operations into
symbolic computation ( 3 , 4 ). This symbolic abstraction
allows TrainVerify to reason about the underlying algebraic
semantics of the computation without being limited by specific
data or affected by numeric noises. TrainVerify uses lineage
metadata ( 2 ) to track how tensors and operations in the
parallelized graph correspond to their counterparts in the
logical model.

Finally, TrainVerify checks the parallelization equiva-
lence (PE) for the two symbolic DFGs by constructing for-
mulas representing PE and using an SMT solver to formally
verify that these formulas satisfy for all inputs ( 5 ). If PE does
not hold, TrainVerify can output counter-examples.
Scope. To make the verification tractable, TrainVerify has a
focused scope. It treats the logical model as the specification
and assumes it represents the desired semantics. It performs
verification at the level of execution plans, which algebraically
describe a complete training iteration. It does not target bugs
that cause the training frameworks to crash before generating
an execution plan, as such bugs can be handled by traditional
tools. It focuses on verifying the parallel execution logic

and eliminating correctness bugs essential to parallelization,
such as incorrect transformation, wrong synchronization, and
incorrect rank assignment. It does not aim to verify the
runtimes for carrying out an execution plan, such as the kernel
or communication libraries, or the operators’ implementation
details beyond their semantics (e.g., internal buffer operations
in optimizers and collective communication primitives). There
are complementary works like dl2 [40], GPUVerify [29], and
GKLEE [50] tackling these tricky issues in communication
deadlock, memory check, and GPU kernel verification.

5 System Design
In this section, we present the design of the TrainVerify
system, which enables the representation of Symbolic Data
Flow Graphs (sDFG) for verification (§5.1). We also introduce
two key techniques that enhance scalability: staged verification
(§5.2) and shape reduction (§5.3).

5.1 Symbolic Data Flow Graph
As introduced in §2, deep learning models are commonly
represented as data flow graphs in many DNN frameworks.
However, these off-the-shelf graphs are insufficient for fully
capturing the semantics of parallelized model training, due
to two limitations: (1) they often omit critical computations
involved in training, such as backpropagation, optimizer logic
and metrics calculation, e.g., gradient norm (gnorm); and
(2) many operators in deep learning frameworks lack formal
mathematical definitions that are compatible with verification
tools such as SMT solvers. Therefore, TrainVerify extends
conventional graphs into symbolic data flow graphs (sDFGs).
Graph Completion. In PyTorch, models are usually defined
with only the forward pass. PyTorch tracing therefore yields
a DFG of the forward path alone, omitting other operations
from the full training iteration that are crucial to verify overall
parallelization correctness. Thus, TrainVerify reconstructs
the backward pass by following PyTorch built-in automatic
differentiation functionality [7, 62]. TrainVerify also repro-
duces optimizer and metric calculations in the graph, adhering
to the implementation in distributed training systems [22, 52].
After completion, a DFG will include all the computations in
a training iteration.
Graph Symbolization. TrainVerify symbolizes the com-
pleted DFG into sDFG by replacing nodes and edges with
algebraically defined symbolic tensors and operators. Sym-
bolic tensors share the same shape with the original tensors
in DFG, but with symbolic Real as elements without nu-
meric instability, rather than typical FP32 or BF16 data types.
Symbolic operators represent the same arithmetic operations
over tensors as their DNN counterparts, including common
PyTorch operators such as MatMul, AllReduce, etc. These op-
erators are rewritten in TrainVerify to be compatible with
symbolic operands. For example, the symbolic MatMul is de-
fined as: 𝐶𝑖, 𝑗 =

∑
𝑘 𝐴𝑖,𝑘 · 𝐵𝑘,𝑗 where 𝐴, 𝐵, and 𝐶 are symbolic
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Figure 4. Lineage of tensors, in format (s,v). s: index mapping
from a subtensor to its parent tensor; v: value aggregation required
to recover the parent tensor.

tensors, and the computation is performed element-wise using
symbolic expressions. This formulation allows the output
tensor to be represented as an algebraic expression over the
input tensors through symbolic operations. By recursively
substituting input tensors with their corresponding symbolic
expressions, one can compose consecutive operators, ulti-
mately constructing an algebraic expression representing the
entire model.
Lineage. Lineage is a data structure that preserves the seman-
tics of parallelization, indicating how a tensor in the original
logical model is partitioned or replicated during paralleliza-
tion, analogous to DTensor [70] from PyTorch and many other
similar concepts [52, 81, 83]. TrainVerify also includes ten-
sor lineage between the graph for the logical model definition
and the corresponding distributed graph as tensor properties.
As illustrated in Figure 4, operator Op is partitioned into
sub-operators Op1 and Op2, with the input tensor 𝑡𝑎 spatially
partitioned into sub-tensors 𝑡𝑎1 and 𝑡𝑎2. The lineage implies
that 𝑡𝑎 == concat( [𝑡𝑎1, 𝑡𝑎2], dim = 0). Similarly, the output
tensor 𝑡𝑏 is partitioned into 𝑡𝑏1 and 𝑡𝑏2, where the lineage
maintains that 𝑡𝑏1 and 𝑡𝑏2 share the same shape as 𝑡𝑏 but
contain partial values, implying 𝑡𝑏1 + 𝑡𝑏2 = 𝑡𝑏 .

Not all tensors have lineage, such as the tensors created
during parallelization which lack counterpart tensors in the
graph for the logical model definition.

Lineage serves as a crucial bridge between the sDFG for
logical model definition and the distributed sDFG during
equivalence checking. Therefore, all input and output tensors
must carry lineage information to enable end-to-end equiva-
lence checking. The lineage of intermediate tensors is used in
stage-wise parallel equivalence verification.

5.2 Staged Verification

Problem. Modern LLMs are often built with extremely deep
architectures. Verifying equivalence of such models experi-
ence exponential complexity growth due to their combinatorial
nature. As model depth increases, symbolic expressions be-
come intractable, often causing solvers to return unknown, or
fail to terminate due to memory overflow, even for compar-
ing a single element access in tensors. This highlights the
need for an effective approach—decomposing the end-to-end
verification into smaller, tractable sub-problems.

Insight. Inspired by pipeline parallelism, the equivalence
verification of the entire model can be decomposed into
finer-grained stages, with each stage verified individually. If,
for every stage in the logical (non-parallel) model, we can
verify that it is equivalent to its corresponding stage in the
parallelized model, then it naturally follows that the entire
model, formed by composing these stages sequentially, is
also equivalent. Given that the available lineage specifies
the mapping of tensors between the logical graph and the
partitioned graph, both 𝐺𝑙 and 𝐺𝑝 can be partitioned into
stages accordingly. Formally, if two corresponding stages 𝑓
and 𝑓 ′ are equivalent for all inputs, and similarly for 𝑔 and 𝑔′,
then their composition must also be equivalent:

∀𝑥1, 𝑓 (𝑥1) = 𝑓 ′ (𝑥1) ∧ ∀𝑥2, 𝑔(𝑥2) = 𝑔′ (𝑥2)
⇒ ∀𝑥, 𝑓 (𝑔(𝑥)) = 𝑓 ′ (𝑔′ (𝑥))

Design. TrainVerify introduces staged verification. Logical
graph 𝐺𝑙 and multi-device graph 𝐺𝑝 are aligned, then parti-
tioned into stages. Each stage 𝑆 consists of two corresponding
subgraphs, 𝑆.𝐺𝑙 and 𝑆.𝐺𝑝 , drawn from the two respective
graphs. If all stages pass the verification, the process guaran-
tees end-to-end equivalence between the two graphs.

TrainVerify obtains tensor alignment via lineage analysis,
identifying bundles that each contains an original tensor in
𝐺𝑙 along with its counterparts in 𝐺𝑝 . In determining this
alignment, TrainVerify traverses 𝐺𝑙 in topological order
while simultaneously traversing 𝐺𝑝 .

TrainVerify then determines stages by repeatedly apply-
ing backward slicing [78] on the dual graphs. Tensor alignment
aids in aligning operators and guides the partitioning of the
entire graph into stages. Specifically, during a topological
traversal of 𝐺𝑙 , whenever an unvisited tensor with lineage
information is encountered, it is designated as the output
tensor of a new stage 𝑆 . A backward trace is then initiated
from this tensor to identify the corresponding input tensors
of the stage in 𝐺𝑙 . This trace follows the reverse direction of
graph edges and terminates upon reaching tensors that also
carry lineage, thereby defining the boundaries of a subgraph
in 𝐺𝑙 . Using the lineage of each boundary tensor, the corre-
sponding boundaries in 𝐺𝑝 are also identified. The stage 𝑆
is then constructed by extracting the associated subgraphs
from both 𝐺𝑙 and 𝐺𝑝 . Subsequent stages are determined by
continuing the traversal over the remaining unvisited portions
of 𝐺𝑙 and repeating this process. The procedure eventually
terminates at the model’s output tensors, yielding a complete
partitioning of all stages for verification.
Parallel Solving. Algorithm 1 shows an overview of stage-
parallel verification. The global relation pool 𝑅 manages
verified relationships among tensors (line 1). The input graphs
are partitioned into stages following the aforementioned pro-
cess (line 2). For each stage, the desired equivalence of both
input and output is pre-encoded by lineage, then workers can
be invoked sequentially and run in parallel (line 4). After a
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Algorithm 1 Stage Parallel Verification
Input: Logical graph 𝐺𝑙 , multi-device graph 𝐺𝑝 , lineage 𝐿
Output: A Boolean indicating whether 𝐺𝑙 is equivalent to 𝐺𝑝 .

1: 𝑅 ← equivalence of 𝐺𝑙 and 𝐺𝑝 inputs ⊲ global relation pool
2: stages← align_and_partition(𝐺𝑙 ,𝐺𝑝 , 𝐿)
3: for stage 𝑆 in stages do
4: async run Worker(𝑆 , 𝑅.snapshot())
5: 𝑅.add(𝑆.𝐿𝑜𝑢𝑡 )

6: return all([𝑆 .worker.result()==True for 𝑆 in stages])
7:
8: function Worker(S, R)
9: if (𝑆.𝐿𝑖𝑛 not in R) then

10: return False
11: 𝑋 ←infer_rx_shapes(S.𝐺𝑙, S.𝐺𝑝, S.𝐿𝑖𝑛 ∪ S.𝐿𝑜𝑢𝑡 )
12: S.init_symbolic_variables(shape=𝑋)

13: outputs← symbolically execute S.𝐺𝑙 and S.𝐺𝑝

14: cond← 𝑆.𝐺𝑙 .inputs
𝑆.𝐿𝑖𝑛
== 𝑆.𝐺𝑝 .inputs

15: target← 𝑆.𝐺𝑙 .outputs
𝑆.𝐿𝑜𝑢𝑡
== 𝑆.𝐺𝑝 .outputs

16: if (target is not AlwaysTrue given outputs ∪ cond ) then
17: return False
18: return True

stage worker is issued, its target output equivalence is assumed
correct and added to the global relation pool 𝑅 (line 5). Sub-
sequent workers are invoked without waiting for prior ones
to complete. TrainVerify uses a process pool for worker
management, with a configurable concurrency limit. All work-
ers are later synchronized at a barrier to ensure successful
completion (line 6).

In each stage’s worker, input equivalence is first checked
against previously verified relations (line 9). If the equivalence
condition does not always hold, then algorithm terminates and
returns False. The reduced shapes of the involved tensors are
inferred (line 11), which will be detailed in §5.3. Symbolic
variables for inputs are then instantiated based on reduced
shapes (line 12). Output equivalence is verified (lines 15 to 17)
based on in-stage computation after applying the correspond-
ing operators (line 13) given the verified relation between
inputs (line 14). The verification goals, including losses, final
gradient updates, and metrics, correspond to ensuring the
desired output equivalence at their affiliated stages.
Supporting Customized Equivalence Approximations. Par-
allelization of certain model architectures may intentionally
introduce approximate mathematical equivalence to optimize
performance. For instance, in distributed training of ResNet
models, many implementations adopt per-device local Batch-
Norm as an approximation of global BatchNorm, omitting the
additional cross-device averaging that is implicitly embodied
in the formulation for the logical model definition. Similarly,
in distributed training of MoE LLMs such as DeepSeek-V3,
routing is often restricted to a subset of nodes rather than
spanning the entire cluster in order to reduce communica-
tion costs. TrainVerify supports such approximations in
staged verification by overriding the approximate computation

(line 13) with its strict-equivalence version, as configured
by the user. For approximated BatchNorm, the overridden
computation restores the omitted cross-device averaging. For
MoE routing, it bypasses the logic that restricts routing to a
subset of nodes.

5.3 Shape Reduction

Problem. Modern DNN models often contain tens to hun-
dreds of billions of variables. Even with the stage-parallel
design, a single worker may still handle millions of variables,
making verification computationally infeasible at such scale.
The shape reduction mechanism reduces complexity while
preserving verification fidelity.
Insight. Although DNN operators typically process large high-
dimensional tensors, many operations exhibit redundancy.
This redundancy arises from the SIMD (Single Instruction,
Multiple Data) property inherent to DNN operators, which
apply the same computation across different data elements
of a tensor. As shown in Figure 5, elements 𝑐1,1 and 𝑐2,2
from output tensor are computed with the same algebraic
expression but over distinct input sets:

𝑐1,1 = 𝑎1,1 · 𝑏1,1 + 𝑎1,2 · 𝑏2,1 + 𝑎1,3 · 𝑏3,1
𝑐2,2 = 𝑎2,1 · 𝑏1,2 + 𝑎2,2 · 𝑏2,2 + 𝑎2,3 · 𝑏3,2

a1,1

a2,1

a3,1

=

a1,2

a2,2

a3,2

a1,3

a2,3

a3,3

b1,1

b2,1

b3,1

b1,2

b2,2

b3,2

b1,3

b2,3

b3,3

c1,1

c2,1

c3,1

c1,2

c2,2

c3,2

c1,3

c2,3

c3,3

Figure 5. DNN operator MatMul: different output elements 𝑐1,1 and
𝑐2,2 are calculated using the same function but on different inputs.

Therefore, verification may be performed on the same sDFG
with only tensor shapes reduced, omitting redundant elements
without compromising the verification outcome. We formally
prove that verification on a shape-reduced sDFG is equivalent
to verifying the original one. A proof sketch is provided in §6.
Minimum Shapes. Shape reduction shrinks each dimension
of a tensor while preserving its total number of dimensions,
resulting in a smaller volume. The reduction must satisfy
shape alignment constraints, which enforce consistency across
multiple tensors, and semantic intactness constraints, which
preserve the representative operations from the original scale.

For example, matrix multiplication, expressed in shape nota-
tion as MatMul( [𝑀,𝐾] × [𝐾, 𝑁 ]) = [𝑀, 𝑁 ], enforces equality
relations among the dimensions 𝑀 , 𝐾 , and 𝑁 respectively
across multiple tensors as part of shape alignment. It also
enforces semantic intactness, requiring 𝐾 ≥ 2 to avoid in-
validating the Add computation along this dimension. Shape
alignment may further involve algebraic reasoning. For in-
stance, a reshape operation that converts a tensor from shape
[𝑀, 𝑁 ] to [𝑀, 𝑃,𝑄] must satisfy the constraint 𝑃 ×𝑄 = 𝑁 to
ensure that the total number of elements remains unchanged.
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Algorithm 2 Inferring Minimum Reduced Shapes
Input: Logical graph 𝐺𝑙 , multi-device graph 𝐺𝑝 , lineage 𝐿
Output: Tensors’ reduced shapes shape_map

1: tensors← 𝐺𝑙 .inputs +𝐺𝑝 .inputs

2: constraints← ∅
3: for all 𝑡 ∈ tensors do
4: for 𝑑 ← 1 to 𝑡 .ndim do
5: 𝑡 .rx_shape[𝑑] ← init_symbolic_int()
6: constraints.add(
7: 1 ≤ 𝑡 .rx_shape[𝑑] ≤ 𝑡 .shape[𝑑]) 1

8: for all 𝑜𝑝 ∈ 𝐺𝑙 ∪𝐺𝑝 do
9: inputs← 𝑜𝑝.inputs()

10: outputs← 𝑜𝑝.outputs()
11: constraints.add(

𝑜𝑝.shape_align_cons(inputs, outputs)) 2

12: constraints.add(
𝑜𝑝.semantic_cons(inputs, outputs)) 3

13: constraints.add(𝐿.align(𝐺𝑙 .inputs,𝐺𝑝 .inputs)
14: + 𝐿.align(𝐺𝑙 .outputs,𝐺𝑝 .outputs)) 4

15: objective← ∑
𝑡 ∈tensors

∏(𝑡 .rx_shape) 5

16: model← optimizer.minimize(objective)
17: shape_map← {𝑡 : model.eval(𝑡 .rx_shape)
18: for 𝑡 ∈ tensors}
19: return shape_map

Algorithm. The procedure of shape reduction is shown in
Algorithm 2. By collecting the minimum feasible shape for
each tensor dimension, it formulates the problem as an integer
quadratic optimization, and computes per-stage minimum
shapes subject to following constraints: 1 Each dimension’s
minimum size should be between 1 and its original size; 2

Operator enforces shape alignment constraints over input and
output tensors’ dimensions; 3 Operator enforces semantic
intact constraints over tensor dimensions; 4 Lineage enforces
that each input/output tensor in 𝐺𝑝 holds consistent shapes
with its counterpart (sub)tensors in 𝐺𝑙 . The optimization
goal 5 uses the total tensor volume to approximate solver
complexity, while allowing alternative objectives for solver
efficiency. The reduced shapes for all tensors in𝐺𝑙 and𝐺𝑝 are
then determined.

6 Correctness Proof for Shape Reduction
This section presents a proof sketchI for the correctness of the
shape reduction method—verified parallelization equivalence
for shape-reduced plans extends to their full-size counterparts.

DNN operators are predominantly SIMD (Single-Instruction
Multiple-Data), performing repeated, homogeneous compu-
tations (a kernel function) over array elements. This SIMD
property is central to enabling our shape reduction. We begin
by introducing a formal definition of an SIMD function.

IThe complete proof is in https://arxiv.org/abs/2506.15961

6.1 Formalization
Consider a function 𝑓 (x) → y, where x ∈ 𝑅𝑑𝑎1 ×𝑑𝑎2 ×···×𝑑𝑎𝑚 and
y ∈ 𝑅𝑑𝑏1 ×𝑑𝑏2 ×···×𝑑𝑏𝑛 . So, 𝑟𝑎𝑛𝑘 (x) =𝑚 and 𝑟𝑎𝑛𝑘 (y) = 𝑛. If 𝑓 is
an SIMD function, a kernel function 𝜃 associated with 𝑓 takes
a subtensor from x and outputs a scalar value. Formally:

Definition 2 (Kernel function). A kernel function 𝜃 is a
function that takes 𝑘 scalar inputs and produces a single
scalar output:

𝜃 : R𝑘 → R.

Next, we define which input subtensor is associated with
each output element. Consider the same function 𝑓 (x) → y.
A dependency mapping 𝜏 associated with 𝑓 is a function that
maps each index i in the output y to a list of indices in the
input x. Formally:

Definition 3 (Dependency mapping). A dependency mapping
𝜏 is an affine transformation that maps a vector of integers
(an index of tensor y) to a list of indices in another tensor (i.e.,
x):

𝜏 : 𝑖𝑑𝑥 (y) ∈ N𝑛 → [𝑖𝑑𝑥 (x), . . . ] ∈ N𝑘×𝑚,

where 𝑖𝑑𝑥 (·) is the indexing function of the tensor; 𝑛 and𝑚
are the ranks of x and y; and 𝑘 is the number of inputs in 𝜃 .

Definition 4 (SIMD function). A function 𝑓 (x) → y is an
SIMD function if each output element y[i] is computed as:

y[i] = 𝜃 (x1, x2, . . . , x𝑘 ),

where 𝜃 is the kernel function of 𝑓 , and

x𝑗 = x[𝜏 (i) [ 𝑗]], 1 ≤ 𝑗 ≤ 𝑘

where 𝜏 is the dependency mapping of 𝑓 .

An SIMD function 𝑓 is characterized by its dependency
mapping 𝜃 𝑓 and kernel function 𝜏𝑓 . In compact notation, we
write its operation as y[i] = 𝜃 𝑓 (x[𝜏𝑓 (i)]). II

Another type of LLM operators are reductional operations,
such as sum. A reductional function 𝑓 : R𝑛 → R returns a
single output element from processing a reduction operation
among all elements in the input tensor, with the reduction
operation satisfying the commutative and associative laws.

Definition 5 (Reductional function). For an input tensor
𝑋 ∈ R𝑛 , the reductional function 𝑓 applies a binary operation
⊙ to all elements of 𝑋 such that:

𝑓 (𝑋 ) = 𝑥1 ⊙ 𝑥2 ⊙ · · · ⊙ 𝑥𝑛,

and ⊙ satisfies commutativity (𝑎 ⊙𝑏 = 𝑏 ⊙𝑎) and associativity
((𝑎 ⊙ 𝑏) ⊙ 𝑐 = 𝑎 ⊙ (𝑏 ⊙ 𝑐)).

IIFor brevity, we assume a single-tensor input for function 𝑓 throughout this
paper; our method trivially extends to multiple input and output tensors.
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6.2 Observations
We make two key observations about LLM operators that are
computational (excluding operators like concat and slice)
but not reductional.
Observation 1: LLM operators have kernel functions. We
observe that all layers in the transformer architecture have
their own kernel functions (Definition 2), including Feed
Forward layers, Multi-Head Attention layers without masking
(masks discussed in Appendix A), Add & Norm layers, ReLU,
Softmax, and Residual addition.

Consider matrix multiplication (i.e., MatMul) as an example.
Given two matrices A ∈ R𝑚×𝑝 and B ∈ R𝑝×𝑛, the resulting
matrix C ∈ R𝑚×𝑛 has elements 𝑐𝑖, 𝑗 (short for C[𝑖] [ 𝑗]) com-
puted by: 𝑐𝑖, 𝑗 =

∑𝑝

𝑘=1 𝑎𝑖,𝑘 ·𝑏𝑘,𝑗 . Therefore, MatMul has a kernel
function:

𝜃 (𝑎𝑖,1, . . . , 𝑎𝑖,𝑝 , 𝑏1, 𝑗 , . . . , 𝑏𝑝,𝑗 ) =
∑𝑝

𝑘=1 𝑎𝑖,𝑘 · 𝑏𝑘,𝑗
Observation 2: LLM operators have dependency mappings
that can be expressed as affine transformations. This prop-
erty is intuitive, as the “striding” of kernel functions across
tensors typically occurs at regular, constant intervals [57].
Consequently, when the input to the dependency mapping—
corresponding to the output tensor’s index—changes, the
resulting input indices change linearly. That is, the mapping
takes the affine transformations:

𝜏 (i) = [M1 · i + b1, . . . , M𝑘 · i + b𝑘 ] .
For example, in the above MatMul case, the dependency

mapping 𝜏𝐴 can be written as:

𝜏𝐴 (
[
𝑖

𝑗

]
) = [M𝐴1

[
𝑖

𝑗

]
+ b𝐴1, . . . ,M𝐴𝑝

[
𝑖

𝑗

]
+ b𝐴𝑝 ],where

M𝐴1 =

(
1 0
0 0

)
, b𝐴1 =

(
0
1

)
, . . . ,M𝐴𝑝 =

(
1 0
0 0

)
, b𝐴𝑝 =

(
0
𝑝

)
Putting it all together. MatMul is an SIMD function (Defini-
tion 4) because it has
• a kernel function:

𝜃 (𝑎𝑖,1, . . . , 𝑎𝑖,𝑝 , 𝑏1, 𝑗 , . . . , 𝑏𝑝,𝑗 ) =
∑𝑝

𝑘=1 𝑎𝑖,𝑘 · 𝑏𝑘,𝑗 ;
• a dependency mapping for each input tensor:

𝜏𝐴 (𝑖, 𝑗) = [(𝑖, 𝑘) |1 ≤ 𝑘 ≤ 𝑝],
𝜏𝐵 (𝑖, 𝑗) = [(𝑘, 𝑗) |1 ≤ 𝑘 ≤ 𝑝],

where 𝜏𝐴 and 𝜏𝐵 are the dependency mappings for input
matries A and B;
• and MatMul can be expressed as:

𝑐𝑖, 𝑗 = 𝜃 (𝐴[𝜏𝐴 (𝑖, 𝑗)] ⊕ 𝐵 [𝜏𝐵 (𝑖, 𝑗)]),
where ⊕ represents list concatenation.

6.3 Proof Sketch
We establish the correctness of TrainVerify’s shape reduc-
tion by proving that equivalence between two data flow graphs
(DFGs) on size-reduced tensors implies their equivalence

on full-scale tensors. We denote the logical and transformed
DFGs (before and after applying parallelization) as functions
𝑓 and 𝑔, respectively.

6.3.1 Prerequisite Relations. Before presenting the main
theorem, we begin with two equivalent definitions that serve
as the foundation for the proof.
Definition 6 (Mapping permutation equivalence). For two
dependency mappings 𝜏1 and 𝜏2, we say they are mapping
permutation equivalent, denoted 𝜏1 �𝑃 𝜏2, if there exists a
permutation function 𝑃 , such that

∀𝑖, 𝜏1 (𝑖) = 𝑃 (𝜏2 (𝑖))
Mapping permutation equivalence captures LLM operators

with commutative properties, where permuting the inputs
does not affect the output. Similarly, we need to define a
corresponding equivalence relation for kernel functions.
Definition 7 (Kernel permutation-set equivalence). For two
kernel functions 𝜃1 and 𝜃2, we say they are kernel permutation-
set equivalent, denoted 𝜃1 �𝑄 𝜃2, if there exists a non-empty
set 𝑄 of permutation functions, such that

∀𝑃 ∈ 𝑄, ∀x, 𝜃1 (x) = 𝜃2 (𝑃 (x))
6.3.2 Premises from SMT Solver. In TrainVerify, we use
an SMT solver (Z3) to verify that a shape-reduced model pre-
serves parallelization equivalence. Specifically, if the solver
passes, it proves that for all inputs, the logical dataflow graph
of the shape-reduced model is equivalent to that of the paral-
lelized version.

This result yields a premise for each stage (§5.2) in Train-
Verify of the following form, where i is an 𝑛-dim index.

∀x,∀i ∈ I, 𝑓 (x) [i] = 𝑔(x) [i],

where I = {
𝑛∑︁
𝑗=0

𝑎 𝑗e𝑗 | 𝑎 𝑗 ∈ {0, 1} for all 𝑗}

In the equation, e𝑖 denotes the standard basis vectors in R𝑛,
defined as:

(e𝑖 ) 𝑗 =
{
1 if 𝑗 = 𝑖,
0 otherwise.

Each e𝑖 ∈ N𝑛 is a column vector with a single 1 in the i-th
position and 0 elsewhere, except for 𝑒0 which is all 0s; namely,

e0 =
©­­«
0
...

0

ª®®¬𝑛×1 , e1 =
©­­«
1
...

0

ª®®¬𝑛×1 , . . . , e𝑛 =
©­­«
0
...

1

ª®®¬𝑛×1
The above premise holds due to Algorithm 2, lines 4 and 12
where TrainVerify enforces that, for any output dimension of
each operator—excluding those not involved in computation
(e.g., batch dimensions or element-wise operations)—both
the logical and parallelized dataflow graphs retain a size of
at least two in those dimensions. Meanwhile, the equivalence
for arbitrary input x is established by symbolic execution.
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6.3.3 Main Proof. We now present the main proof of shape
reduction correctness. The argument proceeds in three steps:
1. We first prove 𝜃 𝑓 �𝑄 𝜃𝑔 given SMT solver’s premises.
2. We then prove 𝜏𝑓 �𝑃 𝜏𝑔 based on the premises.
3. Finally, we apply 𝜃 𝑓 �𝑄 𝜃𝑔 and 𝜏𝑓 �𝑃 𝜏𝑔 to establish the

shape reduction theorem.
Lemma 1. For SIMD functions 𝑓 and 𝑔:

∀x, 𝑓 (x) [e0] = 𝑔(x) [e0] =⇒ 𝜃 𝑓 �𝑄 𝜃𝑔 .

We prove this lemma by contradiction—if 𝜃 𝑓 and 𝜃𝑔 are not
kernel permutation-set equivalent, then there must exist some
input x′ where 𝜃 𝑓 (x′) ≠ 𝜃𝑔 (x′), which contradicts the premise
that for all x, 𝑓 (x) [e0] = 𝑔(x) [e0].
Lemma 2. For SIMD functions 𝑓 and 𝑔:

∀x,∀i ∈ I, 𝑓 (x) [i] = 𝑔(x) [i],

where I = {
𝑛∑︁
𝑗=0
𝑎 𝑗e𝑗 | 𝑎 𝑗 ∈ {0, 1} for all 𝑗}

⇒ 𝜏𝑓 �𝑃 𝜏𝑔 .

By the premise, we can prove for each dimension 𝑗 ∈ [1, 𝑘],
∃𝑃 𝑗 ,∀i, 𝜏𝑓 (i) [ 𝑗] �𝑃 𝑗

𝜏𝑔 (i) [ 𝑗]. Later, we prove that all 𝑃 𝑗 s are
the same permutation (i.e., 𝜏𝑓 �𝑃 𝜏𝑔).

Theorems 3 and 4 prove the essence of shape reduction:
verified parallelization equivalence on shape-reduced
models faithfully extends to the original models.

Theorem 3. Given SIMD functions 𝑓 and 𝑔,
∀x,∀i ∈ I, 𝑓 (x) [i] = 𝑔(x) [i],

where I = {
𝑛∑︁
𝑗=0
𝑎 𝑗e𝑗 | 𝑎 𝑗 ∈ {0, 1} for all 𝑗}

=⇒ ∀x, 𝑓 (x) = 𝑔(x)
Proof. Given the premise:
• By Lemma 1, 𝜃 𝑓 �𝑄 𝜃𝑔.
• By Lemma 2, 𝜏𝑓 �𝑃 𝜏𝑔 and 𝑃 ∈ 𝑄 .
• Finally, we prove

𝜃 𝑓 �𝑄 𝜃𝑔 ∧ 𝜏𝑓 �𝑃 𝜏𝑔 ∧ 𝑃 ∈ 𝑄 =⇒ 𝑓 = 𝑔

∀x,∀i, 𝑓 (x) [i] = 𝜃 𝑓 (x(𝜏𝑓 (i))) [by Definition 4]
= 𝜃𝑔 (𝑃 (x[𝜏𝑓 (i)])) [by 𝜃 𝑓 �𝑄 𝜃𝑔 ∧ 𝑃 ∈ 𝑄]
= 𝜃𝑔 (x[𝑃 (𝜏𝑓 (i))]) [by tensor indexing rules]
= 𝜃𝑔 (x[𝜏𝑔 (i)]) [by 𝜏𝑓 �𝑃 𝜏𝑔]
= 𝑔(x) [i]

Because for any input x, 𝑓 (x) and 𝑔(x) produce the same
result, therefore 𝑓 = 𝑔. □

Theorem 4. Given reductional functions 𝑓 and 𝑔,
∀x ∈ R2, 𝑓 (x) = 𝑔(x) =⇒ ∀x ∈ R𝑚, 𝑛 ≥ 2, 𝑓 (x) = 𝑔(x).

We prove the theorem by mathematical induction.

7 Implementation
We implement TrainVerify in Python with 6,000 lines of
code, using the Z3 solver [35] for equivalence checking.
Algebraic Expression of Models. TrainVerify leverages
nnScaler, a state-of-the-art distributed training framework [52]
that adopts graph-based parallelization. It traces model code
written for single-GPU training to obtain an intermediate
representation, then compiles it into a parallelized graph
(IRGraph), and finally emits the distributed training code.

Building full-fledged execution plans. TrainVerify natu-
rally derives the multi-device plan from the IRGraph, without
tracing the distributed code. The IRGraph encodes both for-
ward and backward passes, with nodes representing PyTorch
operators [63], communication primitives, and custom oper-
ators. As the distributed gnorm computation resides in static
code outside the graph, TrainVerify completes the execu-
tion plan by injecting semantically equivalent logic as custom
operators. The current version of TrainVerify supports only
ZeRO Stage 1 [65], and thus abstracts the optimizer as a
local gradient update operation. The logical model is ob-
tained by invoking nnScaler to emit a single-GPU execution
plan. This process faithfully captures operators during trac-
ing, so the execution plan aligns with its model definition in
code. Parallelization equivalence is then verified between the
single-device and multi-device execution plans.

Tracking tensor lineage between dual graphs. TrainVerify
infers tensor lineage from nnScaler’s metadata, where the index
mapping specifies how a sub-tensor is sliced from the full
tensor, and the value mapping indicates whether aggregation
with sibling tensors is required for reconstruction. However,
this metadata has two limitations. First, corresponding tensors
across the dual graphs may have mismatched IDs. We resolve
this by using the source code locations to match operators
and align their associated tensors. Second, both index and
value mappings are scoped to a single micro-batch within
one data pipeline, which leads to inconsistent parallelization
semantics between the graphs. To resolve this, TrainVerify
shifts index mappings based on DP rank and micro-batch ID,
to reflect the global batch context; and uses SSA-based tensor
IDs along with static analysis of communication nodes to
identify value-wise aggregation across data pipelines.

Adapting operators for shape-reduced symbolic tensors. Op-
erators in the IRGraphs are not directly applicable to symbolic
variables. TrainVerify implements shape-reduction rules
and symbolic adaptations for the operators used in GPT [31],
Llama3, and DeepSeek-V3 models (Table 4 in Appendix A.1
lists them). TrainVerify rewrites both forward and backward
computations. The rewritten operation logic strictly adheres
to the original mathematical definitions.

Extension for new model architectures. Adaptation is only
needed if new operators are introduced. Shape reduction
rules are specified using simple operators like equal, larger,
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Figure 6. Implementation Overview.

smaller, and divisible, making them straightforward to spec-
ify and maintain. The operator rewriting effort is also moder-
ate, primarily involving the use of NumPy [20] and Python’s
built-in operators to emulate PyTorch and communication
operations. This convenience is enabled by Z3 variables
supporting Python operator overloading, allowing symbolic
expressions to behave like native types (e.g., int, float). In
our experience, it took 32 development hours to rewrite 40
operators, with 500 lines of code.

Appendix A.2 uses modularized feedforward to showcase
efforts for operator adaptation. Appendix A.3 describes how
we address other practical challenges, without compromis-
ing correctness, in shape reduction and adapting non-SIMD
operators (e.g., the embedding layer and topK operator).
Adaptation to Other Frameworks. TrainVerify defines
a graph interface and a solver interface to decouple from
both nnScaler and Z3, as shown in Figure 6. To enable ver-
ification, a parallelization framework must provide an SSA
computation graph enriched with tensor lineage. This may
require framework-specific knowledge when such representa-
tions are not natively supported. The modular design of stage
checker also facilitates potential switching between symbolic
engines (e.g., SymPy [59]) to support operator rewriting and
solver-specific optimizations.
Accelerating Solving. To enable practical verification time
and memory usage for extremely large execution plans, we
design several solver-specific optimizations.

Efficient Equivalence Checking. We design a hybrid equiva-
lence checker. It first applies a superficial but efficient expres-
sion comparison: if the expressions are equal under simplifi-
cation, the checker short-circuits without invoking the solver;
otherwise, it falls back to the SMT solver. This design exploits
the fact that expression comparison is sound and significantly
faster than formal solving, though it may yield false alarms
due to its superficial nature. To preserve completeness, any
case that fails the expression checker is validated by the SMT
solver. TrainVerify implements the expression checker us-
ing z3.Tactic("solve-eqs") [24], which simplifies equations
via variable elimination and often reduces the problem to an
empty conflict core when expressions are equivalent.

Exp. ID Model Layers DP TP PP NM

L1 Llama3-8B 32 512 1 1 1
L2 Llama3-70B 80 16 8 4 32
L3 Llama3-405B 126 64 8 16 16
D1 DS-V3-16B 27 16 4 2 16
D2 DS-V3-236B 60 16 8 4 16
D3 DS-V3-671B 61 32 8 8 16

Table 2. Evaluated real-world large models.

Lazy Symbolization. TrainVerify instantiates Z3 symbolic
variables only within parallel stage solvers, while maintaining
metadata in the main process. This design addresses two
issues we observed. First, symbolic variables and expressions
are costly under Python fork, even with copy-on-write; they
can add several seconds to each fork operation. Second, Z3
requires variables and solvers to be initialized within context
tables, which have limited capacity (unsigned_int), making
it impractical to store all symbolic tensors globally. Managing
metadata alone also significantly reduces memory overhead.

8 Evaluation
We answer the following questions: (1) Can TrainVerify
verify large parallelized graphs of real-world distributed train-
ing settings? (§8.1); (2) How does TrainVerify scale with
training parameters? (§8.2); (3) What classes of bugs can
TrainVerify eliminate? (§8.3)

8.1 Verifying Real-World LLM Parallelization
To demonstrate TrainVerify’s practicality, we experiment
on verifying execution plans for Llama3 and DeepSeek-V3
models under various real-world setups.

We generate the evaluated models’ DFGs using nnScaler on
a machine with 4 NVIDIA A6000 GPUs. The verification runs
on an Azure instance equipped with a 32-core Intel Xeon(R)
Platinum 8473C CPU and 1.34 TB memory.

Table 2 shows an overview of the parallelization. Appen-
dix B lists the detailed model specifications. We evaluate
the Llama3 models at 8B, 70B, and 405B scales, with plans
configured for up to 8192 GPUs, which follows production
setup [54, 74]. We evaluate the DeepSeek-V3 models at 16B,
236B, and 671B scales, with plans configured for up to 2048
GPUs. Expert parallelism is treated as a form of tensor par-
allelism in nnScaler, thus sharing the same degree as TP. As
nnScaler currently enforces orthogonality between parallelism
strategies, experiment D3 employs the same scale, but uses a
different parallelization to approximate the official setup [36].

Table 3 shows the results. For moderate-scale plans, such as
L1 and D1, TrainVerify completes verification within half
an hour. For large-scale plans, such as L3 and D3, verification
takes up to half a day. The increased cost arises from both
the larger execution plans and the reduced solver parallelism
due to memory constraints. While this cost is non-trivial, it
remains acceptable given the correctness guarantees provided,

247



SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Yunchi Lu, Youshan Miao, Cheng Tan, Peng Huang, Yi Zhu, Xian Zhang, and Fan Yang

create SSA DAGs determine stages verification Total

512 1024 2048 40961.0

4.0

16.0

tim
e(
s)

(a) Global batch size

1024 4096 8192 163841.0

4.0

16.0

tim
e(
s)

(b) Hidden dimension size

128 256 1024 4096 81921.0

4.0

16.0

tim
e(
s)

(c) Sequence length

8 16 32 64 1281.0

4.0

16.0

tim
e(
s)

(d) Attention heads

2 4 8 161.0

4.0

16.0

tim
e(
s)

(e) Pipeline parallelism

4 8 16 32

32

128

512
tim

e(
s)

(f) Layers

2 8 16 32 64

64

512

4096

tim
e(
s)

(g) Data parallelism

2 4 8 16 32

128

1024

tim
e(
s)

(h) Micro batches

1 2 4 8

32

128

512

tim
e(
s)

(i) Tensor parallelism

Figure 7. TrainVerify’s performance trends regarding different training configurations. The y-axes use a log2 scale. Bars indicate the time
breakdown by component, while lines represent the end-to-end verification time.

L1 L2 L3 D1 D2 D3
Solver Parallelism 30 30 30 30 30 10
End-to-end Time 0.2h 2.4h 8.0h 0.4h 2.4h 9.0h

Table 3. Verification time for the evaluated models.

especially when compared to the extended training durations,
often several weeks, required for models at this scale.

8.2 Scalability
We evaluate how TrainVerify verification time scales under
various parallelization and model configurations. The base
model used for variable-controlled experiments is Llama3-8B.
Each experimental group is averaged over 5 independent runs.
Detailed configurations are provided in Appendix B.
Invariance to Original Tensor Shapes. As shown in Fig-
ures 7a to 7d, the verification time of TrainVerify, except for
variance introduced by shape reduction solving, is independent
of the actual tensor sizes. This invariance is achieved through
the shape reduction technique, which effectively compresses
the shapes of symbolic tensors in TrainVerify’s graphs. The
compressed shapes depend solely on partitions rather than
their original dimensions, so the verification time remains
constant regardless of variations in these parameters. For
attention heads, increasing the number logically introduces
more partitions. However, in efficient implementations, each
GPU stacks its local heads and computes them with batched
matmul. Thus, a larger number of attention heads is treated as
reducible and does not impact the verification cost.
Linear Complexity to Parallelization. Stage-parallel verifi-
cation time consists of two main components: (1) the main
process time for iterating over stages and inspecting tensor
shard metadata to prepare inputs for the solver; (2) the parallel
solver time for initializing symbolic variables, computing, and
checking equivalence of each stage in the workers.

When resources are not constrained, the solvers are suffi-
ciently parallelized, making the main process time dominate

parallel solving, max fork = 30 sequential solving
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Figure 8. Verification time with vs. without stage parallelism.

the verification time. Pipeline parallelism introduces a sub-
linear increase in verification time, as Figure 7e shows, since
additional stages contribute only a small number of commu-
nication operators. Increasing model layers adds operators
sequentially, leading to a linear increase in the number of
stages and time, as shown in Figure 7f. For data parallelism,
micro-batching, and tensor parallelism, the verification time
grows linearly due to increased tensor copies proportional to
the parallelism degree, along with the introduction of a small
number of communication nodes, as Figures 7g to 7i show.

As the degree of parallelism increases, parallel solver time
gradually dominates the verification time. This is because
higher parallelism can cause the number of symbolic variables
to grow quadratically, leading to quadratic or even greater
complexity in the solver. For instance, in experiment D3 (DS-
V3–671B in §8.1), the average main process time is much less
than 1s per stage, whereas the average solver time reaches 69s
per stage, causing the main process to stall while waiting for
worker completion. Similar trends are observed in other large
experiments. While the dominance of solver time introduces
deviations from linear scaling, the overall verification time
remains upper-bounded by the statistics reported in §8.1.
Stage-Parallel Verification. We demonstrate the benefit of
stage-parallel design by comparing it against a sequential
configuration where solver parallelism is disabled. Figure 8
shows the results. These experiments use a relatively small-
scale setup (Llama3-8B with 8 GPUs) where individual solvers
are already lightweight. Disabling solver parallelism increases

248



TrainVerify: Equivalence-Based Verification for Distributed LLM Training SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

the end-to-end verification time from under 18 seconds to over
90 seconds, slowing down by 5 times. The ratio will increase
under larger setups as the solver time dominates.

8.3 Eliminating Broad Categories of Bugs
To understand whether TrainVerify addresses correctness
issues that arise in real training systems, we consider broad
categories of bugs that have been found in popular paralleliza-
tion frameworks [52, 66, 67] and discuss whether enforcing
parallelization equivalence eliminates them.
1. Incorrect communication operators. Such as missing

AllReduce operations required for gradient synchronization,
or activating unnecessary communication primitives.

2. Incorrect device assignment. Such as miscalculating
the participating GPUs when initializing communication
groups; or confusing the per-data-parallel mesh with the
global device mesh.

3. Incorrect partitioning of computational operators. Such
as splitting a non-partitionable dimension of a norm op-
erator without proper aggregation or intentional approxi-
mation; or applying misaligned masking and slicing when
extracting partitioned tensor shards.

4. Incorrect scaling of distributed states. Such as incorrect
loss scaling and gradient norm calculation due to mis-
counting tensor replicas under interleaved parallelism, e.g.,
expert and context parallelism.

5. Incorrect pipeline scheduling. Such as gradient synchro-
nization occurring before the final backward iteration of a
batch; or micro-batches being mistakenly shuffled.

6. Incorrect local buffer updates. Such as updating gradient
buffers only for a subset of parameters in the final step;
or only updating BF16 buffers during mixed precision
training.

7. Incorrect buffer management. Violations of memory
layout constraints such as contiguity, alignment, or padding
required by collective communication routines.
Bug categories (1–4) can be eliminated by TrainVerify.

These communication and computation errors manifest as
incorrect arithmetic logic, which is explicitly represented in
the parallelized DFG. TrainVerify’s graphs also include
loss scaling and gradient norm calculations that adhere to
the original manual implementation. Thus, the violations will
be detected through equivalence checking in the affected
stages. In early debugging of graph parallelization in nnScaler,
we observed subtle bugs stemming from in-place operators,
which led downstream operators to consume outdated tensor
values. TrainVerify also helps eliminating such bugs.

For pipeline scheduling (5), TrainVerify ensures that the
execution sequence is valid. Mistakenly shuffled operators
that distort the intended data flow are eliminated through early
analysis of data dependencies. Omitting micro-batches prior
to gradient synchronization is detected through the verification
of finalized gradients. While TrainVerify guarantees that
micro-batch scheduling is functionally correct, it does not

comm. rank comp. scaling sched.
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Figure 9. Reproduced incorrect parallelization cases.

enforce adherence to specific scheduling strategies—such as
interleaved-1F1B—that aim to optimize pipeline efficiency.

Bugs related to buffers (6–7) are out of scope for Train-
Verify as discussed in §4.
Reproduction and Verification. To demonstrate the effective-
ness of TrainVerify, we apply it to verify incorrect execution
plans. We select 14 non-trivial real-world cases from Table 1,
covering the broad categories in §8.3, as shown in Figure 9. As
these cases span multiple systems, we identify the underlying
causes and reproduce them via careful mutation, either in
nnScaler’s system code or directly in the generated plans, en-
suring successful model instantiation. Evaluation is conducted
on the Llama3-8B model using 2-way DP, TP, and PP.

TrainVerify detects equivalence violations in all 14 plans,
each completing within one minute. Two mutations, one in
scheduling and one in communication, are caught early via
topological sorting due to broken tensor dependencies. Two
other communication mutations are flagged during shape
reduction inference for invoking incorrect primitives that
cause output shape mismatches, e.g. replacing AllReduce with
AllGather. The remaining are detected during verification of
their respective stages. Upon detection, TrainVerify gener-
ates a counterexample with concrete input/output values and
violated lineage for the stage. Appendix B.1 includes a case
study for a subtle distributed computation bug in MegatronLM
and shows how TrainVerify eliminates such bugs.
Exposing New Violations. In applying TrainVerify, we
uncover several classes of buggy plans in nnScaler:
• C1: Sharding a non-partitionable dimension.
• C2: Violation of the single static assignment convention.
• C3: Dangling tensors in backward pass.

They are reported to and confirmed by the nnScaler de-
velopers. C1 errors were discovered in its example code,
where the annotation for the modularized operator apply_

rotary_embedding is inaccurate. Under some strategies, the
sequence dimension of the activations is partitioned, but the
precomputed positional embeddings are not sliced accord-
ingly, leading to sharded subsequences being mis-encoded as
independent starts. C2 includes tensors that serve as outputs
for different nodes, violating the SSA convention. Although in
observed cases the output replicas are mathematically equal,
this violation exposes a potential vulnerability: downstream
transformations, if present, may undesirably interfere with
each other. C3 includes backward tensors with consumers
but no producers, which break the data flow. Although they
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happen to be not reflected in the generated model code due to
the autograd accumulation mechanism, this reveals potential
errors in the corresponding system implementation.

9 Discussions and Limitations
TrainVerify opts to verify full execution plans without as-
suming homogeneity across layers or parallelism degrees.
This preserves generality, adapting to increasingly flexible par-
allelization strategies, e.g., differentiated parallelism applied
across Transformer layers [54], or across data pipelines [42].

TrainVerify operates at the symbolic level; thus, floating-
point precision issues or value drift from accumulation order
are out of scope. Certain parallelization bugs, e.g., a missing
AllReduce for tensor averaging (§8.3), can mimic such nu-
meric symptoms (e.g., FP16 to FP8). TrainVerify eliminates
these bugs, avoiding complex debugging where parallelization
errors are mistaken for numerical instability.

TrainVerify relies on graph-based execution plans and
tensor lineage for scalable verification, so it does not directly
apply to code-based parallelization such as MegatronLM [67].
It is possible to support these systems by leveraging tools like
PyTorchFX [71] to trace graphs, handling communication
operations, and obtaining lineage information through either
manual or automated annotation.

TrainVerify is currently built on top of nnScaler [52]. Its
interface, however, is system-agnostic: any parallelization sys-
tem that exposes an SSA graph and lineage can be supported.
For example, StableHLO [23], as an MLIR [49] dialect, is
inherently SSA-based, making the required graph construction
straightforward. Moreover, with minor extensions, programs
parallelized via XLA [80]’s auto-sharding can retain the lin-
eage information necessary for TrainVerify’s verification.

TrainVerify currently requires manual specification of
shape reduction rules and operator rewrites to support sym-
bolic tensors. Automating them, e.g., with autograd and
program synthesis, is future work.

10 Related Work
Neural network equivalence. A body of work [28, 39, 43, 73]
explores neural network equivalence. The closest to Train-
Verify is the work by Eleftheriadis et al. [39], which similarly
encodes neural networks into SMT clauses, but targets approx-
imate equivalence for knowledge distillation. Their system is
restricted to shallow feed-forward networks with at most two
layers and thousands of neurons, while TrainVerify scales
to state-of-the-art LLMs with billions of parameters.

TASO [43] is a neural network optimization system that ac-
celerates neural networks by substituting certain components
with more efficient alternatives. To ensure correctness, TASO
includes a verifier that encodes substitution rules as SMT
clauses to verify the equivalence of the network before and
after substitution. TrainVerify shares a similar philosophy—
treating the original network as the ground truth—but differs

significantly in scale. Similarly, PET [76] optimizes neu-
ral networks via partially equivalent transformations, whose
equivalence proof inspires TrainVerify’s formalization of
shape reduction proof. While TASO and PET handle a small
number of operators for each substitution, TrainVerify oper-
ates end-to-end, requiring verification of the entire model.

Other works address neural network equivalence for vari-
ous purposes, including testing DL compiler [56], supporting
model rewriting rules [28, 76], repairing models [60], and en-
suring the approximation of pruned and distilled models [73].
In contrast, TrainVerify verifies equivalence and focuses on
large-scale parallel training, scaling to models with billions
of parameters, a level unmatched by prior work.

Neural network verification. In the intersection of deep
learning and formal methods, neural network verification [47,
53, 77] addresses a related but orthogonal problem: verifying
whether a trained neural network meets specified require-
ments. These systems encode the network’s concrete weights
and evaluate whether specific input-output pairs, potentially
infinite, satisfy predefined specifications. In contrast, Train-
Verify operates on symbolic tensors, verifying equivalence
across all possible inputs rather than specific cases.

Correctness of DL training. Prior work enhances DL training
via runtime monitoring [25, 33, 44]. TrainCheck [44], for
instance, checks invariants inferred from previously validated
pipelines to capture end-to-end correctness. Such monitoring
provides valuable practical assurance, yet can be constrained
by overlooked metrics and numerical drift. Complementary to
these efforts, TrainVerify offers symbolic verification with
correctness guarantees for parallelization.

11 Conclusion
We present TrainVerify, a system that provides strong cor-
rectness guarantees for distributed training by verifying par-
allelization equivalence. Through multiple techniques such
as symbolic representation, staged verification and shape re-
duction, TrainVerify successfully scales to state-of-the-art
LLMs with hundreds of billions of parameters. Our work
demonstrates that formal methods can apply to and effectively
benefit complex parallel training workflows in practice.
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